精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=alnx+$\frac{1}{x-1}$,a∈R
(Ⅰ)当a=$\frac{3}{4}$时,讨论函数f(x)的单调性;
(Ⅱ)当$a∈[\frac{1}{2},\;2\;)$时,若${x_1}∈(\;0\;,\frac{1}{2}\;)$,x2∈(2,+∞),求证:f(x2)-f(x1)≥ln2+$\frac{3}{4}$.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)根据函数的导数,设ax2-(2a+1)x+a=0(0<a<2)的两根为α,β,得0<α<$\frac{1}{2}$<2<β.由此入手能够证明f(x2)-f(x1)≥ln2+$\frac{3}{4}$.

解答 解:f(x)的定义域为(0,1)∪(1,+∞)且f′(x)=$\frac{{ax}^{2}-(2a+1)x+a}{{x(x-1)}^{2}}$,
(Ⅰ)当a=$\frac{3}{4}$时,f′(x)=$\frac{(3x-1)(x-3)}{4{x(x-1)}^{2}}$,
若0<x<$\frac{1}{3}$或x>3,则f′(x)>0,若$\frac{1}{3}$<x<1或1<x<3,则f′(x)<0,
故f(x)在(0,$\frac{1}{3}$)和(3,+∞)上单调递增,在($\frac{1}{3}$,1)和(1,3)上单调递减;
(Ⅱ)当a∈[$\frac{1}{2}$,2)时,设ax2-(2a+1)x+a=0(0<a<2)的两根为α,β,
则 $\left\{\begin{array}{l}{α+β=2+\frac{1}{α}}\\{α•β=1}\end{array}\right.$,得0<α<$\frac{1}{2}$<2<β.
当x∈(0,α)和(β,+∞)时,f′(x)=$\frac{{ax}^{2}-(2a+1)x+a}{{x(x-1)}^{2}}$>0,
函数f(x)单调递增;
当x∈(α,$\frac{1}{2}$)和(2,β)时,f′(x)<0,
函数f(x)单调递减,
则f(x1)≤f(a),f(x2)≥f(β),
则f(x2)-f(x1)≥f(β)-f(α)=alnβ+$\frac{1}{β-1}$-alnα-$\frac{1}{α-1}$=aln $\frac{β}{α}$+$\frac{α-β}{αβ-(α+β)+1}$=α[lnβ2+β-$\frac{1}{β}$]
(利用α+β=2+$\frac{1}{α}$,α•β=1)
令h(x)=lnx2+x-$\frac{1}{x}$,x>2,
则h′(x)=$\frac{{(x+1)}^{2}}{{x}^{2}}$>0,
则函数h(x)单调递增,
h(x)≥h(2)=2ln2+$\frac{3}{2}$,
∴lnβ2+β-$\frac{1}{β}$≥2ln2+$\frac{3}{2}$>0,
∵a∈[$\frac{1}{2}$,2),
则a[lnβ2+β-$\frac{1}{β}$]≥ln2+$\frac{3}{4}$,
∴f(x2)-f(x1)≥ln2+$\frac{3}{4}$.

点评 本题考查实数的取值范围的求法和不等式的证明,考查利用导数求闭区间上最值的应用,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.教育学家分析发现加强语文阅读理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲、乙两个同轨班级进行实验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面2×2列联表:(单位:人)
优秀人数非优秀人数总计
甲班22830
乙班81220
总计302050
(1)能否据此判断有97.5%的把握认为加强语文阅读理解训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学题所用的时间在5-7分钟,小刚正确解答一道数学题所用的时间在6-8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明先正确解答完的概率;
(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们的大题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列数字开始,由左到右依次选取两个数字,则选出来的第5个个体的编号为(  )
78166572080263140702436997280198
32049234493582003623486969387481
A.08B.07C.02D.01

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={x|2a<x<a+5},B={x|x<6},且A?B,则实数a的取值范围为(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于x的不等式${({\frac{1}{2}})^x}≤{({\frac{1}{2}})^{x+1}}+1$的解集是{x|x≥-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,已知两定点$A(-\frac{1}{3}\;,\;0)$和$B({\frac{1}{3}\;,\;0})$,点M是平面内的动点,且$|{\overrightarrow{AB}+\overrightarrow{AM}}|+|{\overrightarrow{BA}+\overrightarrow{BM}}|=4$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设F2(1,0),R(4,0),自点R引直线l交曲线E于Q,N两点,求证:射线F2Q与射线F2N关于直线x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1、x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数学归纳法证明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的过程中,假设当n=k时成立,则当n=k+1时,左边f(k+1)=(  )
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{3}sinx+cosx+a$(x∈R).
(1)求函数f(x)的最小正周期
(2)若f(x)有最大值3,求实数a的值;
(3)求函数f(x)单调递增区间.

查看答案和解析>>

同步练习册答案