精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

1)当时,求函数图像在点处的切线;

2)求函数的单调递减区间;

3)若函数的在区间的最大值为,求的值.

【答案】12)①当时,无减区间;

②当时,减区间为.

③当时,减区间为.

④当时,减区间为

3

【解析】

(1)对函数进行求导,然后根据导数的几何意义求出切线的斜率,最后求出切线方程即可;

(2)对函数进行求导,让导函数为零,根据导函数为零的根的正负性、两根之间的大小关系进行分类讨论求出函数的单调区间;

(3)根据(2)中的结论,结合已知求出的值.

解:(1时,

切线:.

2

①当时,恒成立,

递增,无减区间;

②当时,

1

+

0

-

0

+

极大值

极小值

减区间为.

③当,即时,

1

+

0

-

0

+

极大值

极小值

减区间为.

④当时,

1

-

0

+

极小值

减区间为.

综上所述:

①当时,无减区间;

②当时,减区间为.

③当时,减区间为.

④当时,减区间为

3)由(2)问结论知,时,

上单调递增,∴

合题意,

由(2)知,当时,处或处取到,

时,最大也不成立.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆:和定点,是圆上任意一点,线段的垂直平分线交于点,设动点的轨迹为.

(1)求的方程;

(2)过点作直线与曲线相交于,两点(,不在轴上),试问:在轴上是否存在定点,总有?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)恒成立的实数的最大值

(2)设,且满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和函数的最值;

(2)已知关于的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(t为参数,).

(1)写出直线l的普通方程和曲线C的直角坐标方程;

(2)若直线l与曲线C交于A,B两点,直线l的倾斜角,P点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在头胎生女孩家庭中抽取了5户,进一步了解情况,在抽取的5户中再随机抽取3户,求这3户中恰好有2户生二孩的概率.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线交抛物线两点.

1)当时,求直线的方程;

2)若过点且垂直于直线的直线与抛物线交于两点,记的面积分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右焦点为,左顶点为,线段的中点为,圆过点,且与交于是等腰直角三角形,则圆的标准方程是____________

查看答案和解析>>

同步练习册答案