分析 (1)由已知得平面QBC∥平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点;
(2)在△ADC中,作AE⊥DC,垂足为E,连接A1E,∠AEA1为平面α与底面ABCD所成二面角的平面角,由此求出平面α与底面ABCD所成二面角的大小.
解答 (1)证明:∵BQ∥AA1,BC∥AD,
BC∩BQ=B,AD∩AA1=A,
∴平面QBC∥平面A1AD,
从而平面A1CD与这两个平面的交线相互平行,
即QC∥A1D.
故△QBC与△A1AD的对应边相互平行,
于是△QBC∽△A1AD,
∴$\frac{BQ}{BB1}$=$\frac{BQ}{AA1}$=$\frac{BC}{AD}$=$\frac{1}{2}$,即Q为BB1的中点;
(2)解:如图所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E.
又DE⊥AA1,且AA1∩AE=A,
∴DE⊥平面AEA1,∴DE⊥A1E.
∴∠AEA1为平面α与底面ABCD所成二面角的平面角.
∵BC∥AD,AD=2BC,∴S△ADC=2S△BCA.
又∵梯形ABCD的面积为6,DC=2,
∴S△ADC=4,AE=4.
于是tan∠AEA1=$\frac{AA1}{AE}$=1,∠AEA1=$\frac{π}{4}$.
故平面α与底面ABCD所成二面角的大小为$\frac{π}{4}$.
点评 本题考查面面平行的性质,考查四棱柱被平面α所分成上下两部分的体积之比的求法,考查二面角的大小的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=log${\;}_{\frac{1}{2}}$x | B. | y=x-1 | C. | y=($\frac{1}{2}$)x | D. | y=x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com