精英家教网 > 高中数学 > 题目详情

【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记

(1)若数列的通项公式为,求数列的通项公式;

(2)证明:“数列单调递增”是“”的充要条件;

(3)若对任意恒成立,证明:数列的通项公式为

【答案】1;(2)证明见解析;(3)证明见解析.

【解析】

1)根据定义可直接求得,从而可计算.

2)先证明充分性,可根据数列的单调性得到,从而可得,再证明必要性,先从可得,再根据可得,依次类推可以得到,从而得到数列为单调增数列.

3)当时,我们得到,就全为零和不全为零分类讨论即可.

1)当,数列是递减数列,最大为

所以 ,所.

2)充分性:数列单调递增,则

所以.

必要性:对于数列

时,,所以

时,,所以

同理即数列单调递增,

故“数列单调递增”是“”的充要条件.

3)当时,,因为,所以

所以

若设全为零,则

,故,其中任意的.

不全为零,设诸第一个为零的记为

中,

其中,所以

因为,所以对任意的总成立,

所以,下面考虑

因为

因为,所以

故对任意的,总有

,因为

所以,这与任意的,总有矛盾,

所以不全为零不成立,

所以,其中任意的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正整数n都可以唯一表示为 ①的形式,其中m为非负整数,),.试求①中的数列严格单调递增或严格单调递减的所有正整数n的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线与抛物线交于两点,且.

(1)求的方程;

(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),,已知处有相同的切线.

1)求函数的解析式;

2)求函数在区间上的最大值和最小值;

3)判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

(1)求曲线的方程;

(2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动圆与圆外切,与圆内切.

1)求动圆圆心的轨迹方程;

2)直线过点且与动圆圆心的轨迹交于两点.是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形中,,,,,上的点,的中点,沿将梯形折起,使平面平面.

1)当时,求证:

2)记以为顶点的三棱锥的体积为,求的最大值;

3)当取得最大值时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案