精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P–ABCD中,

1)设ACBD相交于点M,且平面PCD,求实数m的值;

(2)若,且,求二面角的余弦值.

【答案】(1)

(2)

【解析】

1)由ABCD,得到,由MN∥平面PCD,得MNPC,从而,由此能实数m的值;

2)由ABAD,∠BAD60°,知△ABD为等边三角形,推导出PDDBPDAD,从而PD⊥平面ABCD,以D为坐标原点,的方向为xy轴的正方向建立空间直角坐标系,由此能求出二面角BPCB的余弦值.

解:(1)因为,所以,即.

因为平面PCD,平面PAC,平面平面

所以

所以,即.

(2)因为,可知为等边三角形,

所以,又

,所以

由已知,所以平面ABCD

如图,以D为坐标原点,的方向为xy轴的正方向建立空间直角坐标系,

,则

所以

设平面PBC的一个法向量为,则有

.

,则,即

设平面APC的一个法向量为,则有

,即

,则,即

所以

设二面角的平面角为,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数(其中

1)求实数m的值;

2)已知关于x的方程在区间上有实数解,求实数k的取值范围;

3)当时,的值域是,求实数na的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+3x2+3x(a≠0).

1)讨论函数f(x)的单调性;

2)若函数f(x)在区间(12)是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为其右顶点为,下顶点为,定点的面积为过点作与轴不重合的直线交椭圆两点,直线分别与轴交于两点.

1)求椭圆的方程;

2)试探究的横坐标的乘积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

1)用函数的形式表示曲线

2)若直线与曲线有两个公共点,求实数的取值范围;

3)若点的坐标为为曲线上的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定函数,令,对以下三个论断:

1)若都是奇函数,则也是奇函数;(2)若都是非奇非偶函数,则也是非奇非偶函数:(3之一与有相同的奇偶性;其中正确论断的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲.若点在矩形区域内(包含边界),则挑战成功,否则挑战失败.已知米,中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记的夹角为

1)若足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到);

2)如何设计矩形区域的宽的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域内成功拦截机器人甲?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间英语考试该如何改革引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就是否取消英语听力问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100

120

社会人士

600

(1)已知在全体样本中随机抽取人,抽到持应该保留态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持无所谓态度的人中抽取多少人?

(2)在持应该保留态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案