精英家教网 > 高中数学 > 题目详情

现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.

(1)已知A(-3,-3),B(3,2),求A、B两点的距离D(AB)

(2)求到定点M(1,2)的“直角距离”为2的点的轨迹方程.

并写出所有满足条件的“格点”的坐标(格点是指横、纵坐标均为整数的点).

(3)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.

①F1(-1,0),F2(1,0),a=2;

②F1(-1,-1),F2(1,1),a=2;

③F1(-1,-1),F2(1,1),a=4.

练习册系列答案
相关习题

科目:高中数学 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044

现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.

(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)

(2)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.

①F1(-1,0),F2(1,0),a=2;

②F1(-1,-1),F2(1,1),a=2;

③F1(-1,-1),F2(1,1),a=4.

(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).

①到A(-1,-1),B(1,1)两点“直角距离”相等;

②到C(-2,-2),D(2,2)两点“直角距离”和最小.

查看答案和解析>>

同步练习册答案