精英家教网 > 高中数学 > 题目详情
函数f(x)=x3的反函数是
 
考点:反函数
专题:函数的性质及应用
分析:先把y成常数,求出x=f-1(y),再x,y互换,得函数f(x)=x3的反函数.
解答: 解:设y=f(x)=x3
则x=
3y

x,y互换,得函数f(x)=x3的反函数是y=
3x
,x∈R.
故答案为:y=
3x
,x∈R.
点评:本题考查函数的反函数的求法,是基础题,解题时要注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁衍规律为y=ekt,其中k为常数,t表示时间(单位:小时),y表示病毒个数,则k=
 
,经过5小时,1个病毒能繁殖为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l∥平面α,若两直线夹在l与α间的线段相等,则此两条直线必(  )
A、平行B、相交
C、异面D、平行、相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a1=-15,a2+a6=-6,则当Sn取得最小值时,n的值为(  )
A、4或5B、5或6C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx-x
x

(Ⅰ)求点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设m>0,求f(x)在[m,2m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[a,b]上有(  )
A、最小值f(a)
B、最大值f(b)
C、最小值f(b)
D、最大值f(
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若[-1,1]⊆{x||x2-tx+t|≤1},则实数t的取值范围是(  )
A、[-1,0]
B、[2-2
2
,0]
C、(-∞,-2]
D、[2-2
2
,2+2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:x=2,条件q:(x-2)(x-3)=0,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
3
)=
3
5

(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(t-1)+f(2t)<0.

查看答案和解析>>

同步练习册答案