【题目】甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)请用茎叶图表示这两组数据;
(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(3)现要从中选派一人参加9月份的全国数学联赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.
【答案】
(1)解:作出茎叶图如下图
(2)解:记甲被抽到的成绩为x,乙被抽到成绩为y,用数对(x,y)表示基本事件:
(82,95),(82,75),(82,80),(82,90),(82,85),
(82,95),(82,75),(82,80),(82,90),(82,85),
(79,95),(79,75),(79,80),(79,90),(79,85),
(95,95),(95,75),(95,80),(95,90),(95,85),
(87,95),(87,75),(87,80),(87,90),(87,85),
基本事件总数n=25
记“甲的成绩比乙高”为事件A,事件A包含的基本事件:
(82,75),(82,80),(82,75),(82,80),(79,75),(95,75),
(95,80),(95,90),(95,85),(87,75),(87,80),(87,85),
事件A包含的基本事件数m=12
所以
(3)解:派甲参赛比较合适,理由如下: = (70×1+80×3+90×1+9+2+2+7+5)=85,
= (70×1+80×2+90×2+5+0+5+0+5)=85
∵ = ,S甲2<S乙2∴甲的成绩较稳定,派甲参赛比较合适
【解析】(1)用茎叶图表示两组数据,首先要先确定“茎”值,再将数据按“茎”值分组分类表示在“叶”的位置.(2)要从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率,首先要计算“要从甲、乙两人的成绩中各随机抽取一个”的事件个数,再计算“甲的成绩比乙高”的事件个数,代入古典概型公式即可求解.(3)选派学生参加大型比赛,是要寻找成绩发挥比较稳定的优秀学生,所以要先分析两名学生的平均成绩,若平均成绩相等,再由茎叶图分析出成绩相比稳定的学生参加.
【考点精析】本题主要考查了茎叶图和极差、方差与标准差的相关知识点,需要掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.
(Ⅰ)设为事件“选出的4人中既有文科生又有理科生”,求事件的概率;
(Ⅱ)设为选出的4人中男生人数与女生人数差的绝对值,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.
(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为 .
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)试判断曲线 与 是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
(Ⅰ)如图,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0的参数方程;
(Ⅱ)在平面直角坐标系中,已知直线l的参数方程为 (s为参数),曲线C的参数方程为 (t为参数),若l与C相交于A,B两点,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,曲线 的参数方程为 ( 为参数),以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)求曲线 的普通方程与曲线 的直角坐标方程;
(2)试判断曲线 与 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点,
(1)求椭圆的标准方程;
(2)经过的直线和椭圆交于两点,交抛物线于两点, 是抛物线的焦点,是否存在直线,使得,若存在,求出直线的方程,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.
(1)求椭圆的方程;
(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量, ,函数,函数在轴上的截距我,与轴最近的最高点的坐标是.
(Ⅰ)求函数的解析式;
(Ⅱ)将函数的图象向左平移()个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com