精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为,直线l过点且与x轴不重合,l交圆CD两点,过的平行线,交于点E.设点E的轨迹为.

1)求的方程;

2)直线相切于点M与两坐标轴的交点为AB,直线经过点M且与垂直,的另一个交点为N,当取得最小值时,求的面积.

【答案】(1) (2)

【解析】

1)根据三角形相似得到,得到AE+DE4,再利用椭圆定义求解即可

2的方程为,与椭圆联立,由直线相切得,由x轴、y轴上的截距分别为m,得表达式,结合基本不等式求得坐标及,进而得,则面积可求

1)因为,所以.

,所以,则

所以,从而.

化为

所以

从而E的轨迹为以为焦点,长轴长为的椭圆(剔除左、右顶点).

所以的方程为.

2)易知的斜率存在,所以可设的方程为

联立消去y,得.

因为直线l相切,所以

.

x轴、y轴上的截距分别为m

当且仅当,即时取等号.

所以当时,取得最小值,此时

根据对称性.不妨取,此时

,从而.

联立消去y,得

,解得

所以,故的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:若函数的图象经过变换后所得的图象对应的函数与的值域相同,则称变换的同值变换,下面给出了四个函数与对应的变换:①, 将函数的图象关于直线作对称变换;②, 将函数的图象关于轴作对称变换;③, 将函数的图象关于点作对称变换;④将函数的图象关于点作对称变换.其中的同值变换的有__________(写出所有符合题意的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾(常数为锐角).拟用长度为为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区,其中;方案二:如图2,围成三角形养殖区,其中.

1)求方案一中养殖区的面积

2)求方案二中养殖区的最大面积(用表示);

3)为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为F1F2,且过点

1)求椭圆的标准方程;

2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点BAO的延长线与椭圆交于点C,求ABC面积的最大值,并写出取到最大值时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:(1)对任意,恒有成立;(2)当时,.给出如下结论:

①对任意,有

②函数的值域为

③存在,使得

函数在区间上单调递减的充要条件是存在,使得”.

上述结论正确有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.

1)求直线的极坐标方程及曲线C的直角坐标方程;

2)若是直线上的一点,是曲线C上的一点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x1|a

1)当a1时,解不等式fx)>x+1

2)若存在实数x,使得fxfx+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDADDCCB1,∠BCD120°,四边形BFED为矩形,平面BFED⊥平面ABCDBF1.

(1)求证:AD⊥平面BFED

(2)P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

同步练习册答案