精英家教网 > 高中数学 > 题目详情
在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)是否存在常数a,b,使得对于一切正整数n,都有an=logabn+b成立?若存在,求出常数a和b,若不存在说明理由.
分析:(Ⅰ)由条件得:
1+d=q
1+7d=q2
,由此能求出求结果.
(Ⅱ)假设存在a,b使an=logabn+b成立,则5n-4=loga6n-1+b⇒5n-4=(n-1)loga6+b⇒(5-loga6)n+(loga6-b-4)=0对一切正整数恒成立.由此能求出存在常数a=
56
,b=1
使得对于n∈N*时,都有an=logabn+b恒成立.
解答:解:(Ⅰ)由条件得:
1+d=q
1+7d=q2

d=5
q=6

∴an=5n-4,
bn=6n-1
(Ⅱ)假设存在a,b使an=logabn+b成立,
则5n-4=loga6n-1+b,
∴5n-4=(n-1)loga6+b,
∴(5-loga6)n+(loga6-b-4)=0对一切正整数恒成立.
loga6=5
loga6=b+4

a=
56
b=1

故存在常数a=
56
,b=1

使得对于n∈N*时,都有an=logabn+b恒成立.…(12分)
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}中,若Sn是{an}的前n项和,则数列S6-S3,S9-S6,S12-S9…也成等差数列,且公差为9d.类比上述结论,相应地在公比为q(q≠0,1)的等比数列{bn}中,若Tn是{bn}的前n项积,则有
T6
T3
T9
T6
T12
T9
也成等比数列,且公比为q9
T6
T3
T9
T6
T12
T9
也成等比数列,且公比为q9

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}及公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3,则d=
5
5
;q=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}中,若Sn是{an}的前n项和,则数列S20-S10,S30-S20,S40-S30,也成等差数列,且公差为100d,类比上述结论,相应地在公比为q(q≠1)的等比数列{bn}中,
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100
若Tn是数列{bn}的前n项积,则有
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,a2=b1=3,a5=b2,a14=b3
(1)求数列{an}与{bn}的通项公式;
(2)令cn=ban,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案