精英家教网 > 高中数学 > 题目详情

【题目】以下问题最终结果用数字表示

(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?

(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?

(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?

【答案】(1)60 (2)72 (3)20

【解析】

(1)五位偶数,要求末位必须是0,2,4,分类求出满足条件的结果。

(2)可以求出一共能组成多少个五位数,然后再求出2、3相邻的五位数的个数,两数相减。

(3)确定数字4,5的排法,然后数字1,2,3按照3,2,1的顺序插入。

(1)偶数末位必须为0,2,4对此进行以下分类:

当末位是0时,剩下1,2,3,4进行全排列,=24

当末位是2时,注意0不能排在首位,首位从1,3,4选出有种方法排在首位,剩下的三个数可以进行全排列有种排法,所以当末位数字是2时有=18个数。

同理当末位数字是4时也有18个数,

所以由0、1、2、3、4可以组成无重复数字的五位偶数有24+18+18=60个.

(2)由1、2、3、4、5组成五位数一共有个。

第一步,把2.3捆定,有种排法;

第二步,捆定的2,3与1,4,5一起全排列,共有个数,

根据分步计数原理,2,3相邻的五位数共有 =48个数,

因此由1、2、3、4、5组成无重复数字且2、3不相邻的五位数共有

个数。

(3)把五位数每个数位看成五个空,数字4,5共有个,

然后把数字1,2,3按照3,2,1的顺序插入,只有一种方式,

根据分步计数原理,可知

由1、2、3、4、5组成无重复数字且数字1,2,3必须按由大到小顺序排列的五位数

个。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线

(1)若直线与直线平行,求实数的值;

(2)若 ,点在直线上,已知的中点在轴上,求点的坐标.

【答案】(1);(2

【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出的值;(2)根据时,直线的方程设出点的坐标,由此求出的中点坐标,再由中点在轴上求出点的坐标.

试题解析:(1)∵直线与直线平行,

,经检验知,满足题意.

(2)由题意可知:

,则的中点为

的中点在轴上,∴

型】解答
束】
16

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,前10万元按销售利润的15%进行奖励,若超出部分为t万元,则超出部分按进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).

1)写出奖金y关于销售利润x的关系式;

2)如果业务员小王获得3.5万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,恒有成立,求实数的取值范围;

(2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,平面平面, ,点在棱上.

(Ⅰ)求证:直线平面;

(Ⅱ)若平面,求证: ;

(Ⅲ)是否存在点,使得四面体的体积等于四面体?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:(x1)2+(y3)2=9和圆C2x2y24x2y11=0.

1)求两圆公共弦所在直线的方程;

2)求直线过点C(3,-5),且与公共弦垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的 ,,使得成立.

Ⅰ)分别判断数集是否具有性质,并说明理由;

Ⅱ)求证;

Ⅲ)若,求数集中所有元素的和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求处的切线方程.

)求在区间上的最小值.

)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案