精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为

【答案】4
【解析】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0, 设A(x1 , y1),B(x2 , y2),则y1+y2=4m,y1y2=﹣4,
∴|EG|= y2﹣2y1= y2+ ≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,
故答案为4.
设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|= y2﹣2y1= y2+ ,利用基本不等式即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
设函数f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2 t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+ x的单调区间;
(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,曲线C1 (a为参数)经过伸缩变换 后的曲线为C2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求C2的极坐标方程;
(Ⅱ)设曲线C3的极坐标方程为ρsin( ﹣θ)=1,且曲线C3与曲线C2相交于P,Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.
(Ⅰ)当b=1时,求不等式f(x)≥1的解集;
(Ⅱ)当x∈R时,求证f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆E: (a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=﹣ ,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q,前n项的和Sn , 对任意的n∈N* , Sn>0恒成立,则公比q的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两圆x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0

(1)判断两圆的位置关系;(2)求公共弦所在的直线方程及公共弦的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试比较正弦函数y=sin xx=0x附近的平均变化率哪一个大?

查看答案和解析>>

同步练习册答案