精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方体ABCD﹣A1B1C1D1中,E,M,N分别是BC,AE,CD1的中点,AD=AA1=a,AB=2a.求证:MN∥平面ADD1A1

【答案】证明:以D为原点,分别以DA、DC、DD1为x轴、y轴、z轴建立空间直角坐标系,则A(a,0,0),B(a,2a,0),C(0,2a,0),D1(0,0,a),E( a,2a,0),

∵M、N分别为AE、CD1的中点,
∴M( a,a,0),N(0,a, ).
=(﹣ a,0, ).
=(0,1,0),
显然 =⊥平面A1D1DA,且 =0,
.又MN平面ADD1A1
∴MN∥平面ADD1A1
【解析】以D为原点,分别以DA、DC、DD1为x轴、y轴、z轴建立空间直角坐标系,求出 =(﹣ a,0, ).平面ADD1A1的法向量 =(0,1,0),通过 =0,证明MN∥平面ADD1A1
【考点精析】关于本题考查的直线与平面平行的判定,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为(
A.24
B.48
C.72
D.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均大于1的数列{an}满足:a1= ,an+1= (an+ ),(n∈N*),bn=log5
(1)证明{bn}为等比数列,并求{bn}通项公式;
(2)若cn= ,Tn为{cn}的前n项和,求证:Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足(
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,倾斜角为的直线过点与拋物线交于两点, 为坐标原点, 的面积为.

(1)求

(2)设点为直线与拋物线在第一象限的交点,过点的斜率分别为的两条弦,如果,证明直线过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为 ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),在以坐标原点为极点, 轴的正半轴为极轴建立的极坐标系中,圆的极坐标方程为

(1)求直线被圆截得的弦长;

(2)若点的坐标为,直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意的x∈[﹣1,0],关于x的不等式3x2+2ax+b≤0恒成立,则a2+b2﹣2的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案