精英家教网 > 高中数学 > 题目详情

【题目】某个部件由三个元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )

A. B. C. D.

【答案】B

【解析】

由题意得,得出每个元件的寿命超过1000小时的概率,在根据相互独立事件同时发生的概率的计算公式,即可求解,得到答案.

由题意得,三个电子元件的使用寿命服从正态分布N(1 000,502),

则每个元件的寿命超过1000小时的概率均为,

则元件1和元件2超过1000小时的概率为1-,

则该部件使用寿命超过1000小时的概率为,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解某校学生喜欢吃零食是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人,抽到不喜欢吃零食的学生的概率为

喜欢吃零食

不喜欢吃零食辣

合计

男生

10

女生

20

合计

100

(Ⅰ)请将上面的列表补充完整;

(Ⅱ)是否有99.9%以上的把握认为喜欢吃零食与性别有关?说明理由.

下面的临界值表供参考:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|2x-1|-|x+1|.

(1)将f(x)的解析式写成分段函数的形式,并作出其图象;

(2)若ab=1,对ab∈(0,+∞),≥3f(x)恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某火锅店为了了解气温对营业额的影响随机记录了该店1月份其中5天的日营业额y(单位:万元)与该地当日最低气温x(单位:℃)的数据如下表:

(1)y关于x的线性回归方程x

(2)判断yx之间是正相关还是负相关若该地1月份某天的最低气温为6 用所求回归方程预测该店当日的营业额;

(3)设该地1月份的日最低气温XN(μσ2),其中μ近似为样本平均数σ2近似为样本方差s2P(3.8<X13.4).

附:①回归方程=.

3.2,1.8.XN(μσ2),P(μσXμσ)=0.682 7,P(μ-2σXμ+2σ)=0.954 5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的上顶点为,且离心率为.

1)求椭圆的方程;

2)设是曲线上的动点,关于轴的对称点为,点,直线与曲线的另一个交点为(不重合),过作直线,垂足为,是否存在定点,使为定值?若存在求出的坐标,不存在说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为平行四边形,PA⊥底面ABCD,

(1)求证:平面PCA⊥平面PCD;

(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆经过点,离心率为. 已知过点的直线与椭圆交于两点

(1)求椭圆的方程;

(2)试问轴上是否存在定点,使得为定值.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是自然对数的底数)

(1)求证:

(2)若不等式上恒成立,求正数的取值范围.

查看答案和解析>>

同步练习册答案