精英家教网 > 高中数学 > 题目详情

【题目】直线与圆相交于两点,的面积达到最大时,________.

【答案】

【解析】

由圆的方程找出圆心坐标和半径,同时把直线的方程整理为一般式方程,然后利用点到直线的距离公式表示出圆心到直线的距离,即为圆中弦的弦心距,根据垂径定理得到垂足为弦的中点,由圆的半径,弦心距及弦的一半构成的直角三角形,利用勾股定理表示出弦的长度,然后利用三角形的面积公式底乘以高除,用含有的式子表示出三角形的面积,并利用基本不等式求出面积的最大值,以及面积取得最大值时的值,从而列出关于的方程,求出方程的解即可得到面积最大时的值.

解:由圆,

得到圆心坐标为 ,半径,

把直线的方程为,

整理为一般式方程得:,

.圆心到直线的距离

的长度,

,

又因为,

当且仅当时取等号,取得最大值,最大值为.

解得

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的极值;

(2)若,都有成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:在区间上单调递增;

2)若存在,使得的值域相同,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线(为参数),曲线(为参数),以O为极点,轴的非负半轴为极轴的极坐标系中,已知曲线的极坐标方程为,记曲线的交点为.

1)求点的极坐标;

2)设曲线相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个商场同时出售一款西门子冰箱,其中甲商场位于老城区中心,乙商场位于高新区.为了调查购买者的年龄与购买冰箱的商场选择是否具有相关性,研究人员随机抽取了1000名购买此款冰箱的用户作调研,所得结果如表所示:

50岁以上

50岁以下

选择甲商场

400

250

选择乙商场

100

250

1)判断是否有的把握认为购买者的年龄与购买冰箱的商场选择具有相关性;

2)由于乙商场的销售情况未达到预期标准,商场决定给冰箱的购买者开展返利活动具体方案如下:当天卖出的前60台(含60台)冰箱,每台商家返利200元,卖出60台以上,超出60台的部分,每台返利50.现将返利活动开展后15天内商场冰箱的销售情况统计如图所示:与此同时,老张得知甲商场也在开展返利活动,其日返利额的平均值为11000元,若老张将选择返利较高的商场购买冰箱,请问老张应当去哪个商场购买冰箱

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上的一个动点,且面积的最大值为.

1)求椭圆的方程;

2)过点作直线交椭圆两点,过点作直线的垂线交圆:于另一点.的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点,给出命题:,则存在,使得所有极值之和一定小于0,且是曲线的一条切线,则的取值范围是.则以上命题正确序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知AB分别为椭圆Cab0)的左右顶点,P为椭圆C上异于AB的任意一点,O为坐标原点,=﹣4PAB的面积的最大值为

1)求椭圆C的方程;

2)若椭圆C上存在两点MN,分别满足OMPAONPB,求|OM||ON|的最大值.

查看答案和解析>>

同步练习册答案