精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 )的通径(过焦点且垂直于对称轴的弦)长为,椭圆 )的离心率为,且过抛物线的焦点.

(1)求抛物线和椭圆的方程;

(2)过定点引直线交抛物线两点(的左侧),分别过作抛物线的切线 ,且与椭圆相交于两点,记此时两切线 的交点为.

①求点的轨迹方程;

②设点,求的面积的最大值,并求出此时点的坐标.

【答案】(1) (2)①有最大值为坐标为

【解析】试题分析:1)由抛物线C2x2=2pyp0)的通径长为4,得p=2,由此能求出抛物线C2的方程.由题意C2焦点坐标为(0,1),,由此能求出椭圆C1的方程.

2 ,由点三点共线得设切线的方程为,与抛物线方程联立消去,得

,可得同理可得,切线的方程为联立两方程解得,点坐标为)由此能求出点C的轨迹方程.

设l1与椭圆方程联立,得: ,由此利用韦达定理和根的判别式结合已和条件能求出DPQ的面积的最大值和此时点C的坐标.

试题解析:

(1)∵抛物线的通径长为

,得

∴抛物线的方程为

∵抛物线的焦点在椭圆

,得

∵椭圆的离心率为

∴椭圆的方程为

(2)设

其中

∵点三点共线

*

设切线的方程为,与抛物线方程联立消去,得

,由,可得

同理可得,切线的方程为

联立两方程解得,点坐标为

①设点,则

代入(*)式得,点的轨迹方程为:

②由切线和椭圆方程,消去得:

∵点到切线的距离为

的面积为

∴当 时, 有最大值为

此时,由(*)可得

∴点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限和所支出的维修费用 (万元),有如下的统计数据由资料知呈线性相关,并且统计的五组数据得平均值分别为,,若用五组数据得到的线性回归方程去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,

(1)求回归直线方程;

(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?其中,回答的共有个人,把这个人按照年龄分成5组:第1,第2,第3,第4,第5,然后绘制成如图所示的频率分布直方图,其中,第一组的频数为20.

(1)求的值,并根据频率分布直方图估计这组数据的众数;

(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于两点.

(1)求证:“如果直线过点,那么”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有某高新技术企业年研发费用投入(百万元)与企业年利润(百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:

年科研费用(百万元)

1

2

3

4

5

企业所获利润(百万元)

2

3

4

4

7

(1)画出散点图;

(2)求的回归直线方程;

3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?

参考公式:用最小二乘法求回归方程的系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据.

x

4

5

7

8

y

2

3

5

6

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(2)试根据(1)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.

(相关公式:)

查看答案和解析>>

同步练习册答案