分析 (Ⅰ)证明BE⊥AD,PE⊥AD,然后证明AD⊥平面PBE;
(Ⅱ)说明∠PEB即为二面角P-AD-B的平面角,∠PEB=60°,证明EB⊥PB,EB⊥BC,推出EB⊥平面PBC,说明∠EFB为EF与面PBC所成的角通过求解三角形求解直线EF与平面PBC所成角的正弦值.
解答 解:(Ⅰ)证明:
∵BA=BD=$\sqrt{2}$,PA=PD=$\sqrt{5}$,又E为AD的中点,
∴BE⊥AD,PE⊥AD,
∴AD⊥平面PBE;…(4分)
(Ⅱ)由(Ⅰ)知∠PEB即为二面角P-AD-B的平面角,即∠PEB=60°,
又在Rt△PDE中∠PED=90°,PD=$\sqrt{5}$,DE=1
∴PE=2 同理可得BE=1
∴在△PBE中,由余弦定理得PB=$\sqrt{3}$.
∴BE2+PB2=PE2
∴∠PBE=90°
∴EB⊥PB
又EB⊥AD,BC∥AD
∴EB⊥BC
∴EB⊥平面PBC,
∴∠EFB为EF与面PBC所成的角
又在Rt△PBC中∠PBC=90°,PB=$\sqrt{3}$,BC=2
∴PC=$\sqrt{7}$
又F为PC中点∴$BF=\frac{PC}{2}$
∴$BF=\frac{{\sqrt{7}}}{2}$ 而EB=1
∴在Rt△EFB中由勾股定理有
∴$EF=\frac{{\sqrt{11}}}{2}$∴sin∠EFB=$\frac{1}{{\frac{{\sqrt{11}}}{2}}}=\frac{{2\sqrt{11}}}{11}$
即直线EF与平面PBC所成角的正弦值为$\frac{2\sqrt{11}}{11}$.…(12分)
点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
A. | 20 | B. | 18 | C. | 9 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 24 | B. | 8 | C. | $\frac{8}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,3] | B. | [-3,1] | C. | (-∞,-3]∪[1,+∞] | D. | (-∞,1]∪[3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com