设函数f(x)的图像关于点(1,2)对称,且存在反函数f-1(x),f(4)=0,f-1(4)=________.
[考场错解] 填0 ∵y=f(x)的图像关于点(1,2)对称,又∵f(4)=0,∴f(0)=4,∴f-1(4)=0
[专家把脉] 上面解答错在由图像过点(4,0)得到图像过点(4,0)上,因为f(x)图像关于点(1,2)对称不是关于y=x对称,因此应找出图像过点(-2,4)是关键.
[对症下药] 填-2.
解法1 ∵f(4)=0,∴f(x)的图像过点(4,0).又∵f(x)的图像关于点(1,2)对称,∴f(x)的图像过点 (2-4,4-0)即(-2,4).∴f(-2)=4.∴f-1(4)=-2.
解法2 设y=f(x)上任一点P(x、y)关于点(1,2)对称的点为P′(2-x,4-y).依题意4-y=f(2-x),∴4-f(x)=f(2-x)f(x)+f(2-x)=4.令x=4.∴f(4) +f(-2)=4.又f(4)=0,∴f(-2)=4.∴f-1(4)=-2.
科目:高中数学 来源:黄冈重点作业·高三数学(下) 题型:013
设函数f(x)的图像与函数g(x)的图像关于直线x=3对称,则g(x)与f(x)解析式间的关系是
[ ]
A.g(x)=f(-x) |
B.g(x)=f(3-x) |
C.g(x)=f(-3-x) |
D.g(x)=f(6-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年成都七中二模文) 设函数f(x)=的图像关于原点对称,f(x)的图像在点P(1,m)处的切线的斜率为-6,且当x=2时f(x)有极值.
(1)求a、b、c、d的值;
(2)若x1、x2∈[-1,1],求证:|f(x1) -f(x2)≤.
查看答案和解析>>
科目:高中数学 来源: 题型:
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<。
(1)当x∈[0,x1时,证明x<f(x)<x1;
(2)设函数f(x)的图像关于直线x=x0对称,证明: x0<。
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com