精英家教网 > 高中数学 > 题目详情
14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,且A,B两点都在y轴的右侧,设P为椭圆上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$为坐标原点),求实数t的取值范围.

分析 (1)由于△EGF2的周长为$4\sqrt{2}$,可得4a=4$\sqrt{2}$,解得a.又$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,b2=a2-c2,解出即可得出.
(2)易知直线AB的斜率存在,即t≠0.设直线AB的方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),与椭圆方程联立化为(1+2k2)x2-8k2x+8k2-2=0.利用△>0,及其因为A,B两点都在y轴的右侧,可得x1+x2>0,x1x2>0,解得k的取值范围.利用$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$,及其根与系数的关系可得点P的坐标,代入椭圆C的方程解出即可得出.

解答 解:(1)∵△EGF2的周长为$4\sqrt{2}$,∴4a=4$\sqrt{2}$,解得a=$\sqrt{2}$.
又$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解得c=1,∴b2=a2-c2=1.
∴椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$.
(2)易知直线AB的斜率存在,即t≠0.设直线AB的方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
联立$\left\{\begin{array}{l}y=k(x-2)\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$,化为(1+2k2)x2-8k2x+8k2-2=0.
由△=64k2-4(2k2+1)(8k2-2)>0,得${k^2}<\frac{1}{2}$.
∴${x_1}+{x_2}=\frac{{8{k^2}}}{{1+2{k^2}}},{x_1}{x_2}=\frac{{8{k^2}-2}}{{1+2{k^2}}}$,
又因为A,B两点都在y轴的右侧,∴${x_1}+{x_2}=\frac{{8{k^2}}}{{1+2{k^2}}}>0,{x_1}{x_2}=\frac{{8{k^2}-2}}{{1+2{k^2}}}>0$.
∴${k^2}>\frac{1}{4}$.而${k^2}<\frac{1}{2}$,∴$\frac{1}{4}<{k^2}<\frac{1}{2}$.
∵$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$,∴(x1+x2,y1+y2)=t(x,y),
∴$x=\frac{{{x_1}+{x_2}}}{t}=\frac{{8{k^2}}}{{t(1+2{k^2})}}$,$y=\frac{{{y_1}+{y_2}}}{t}=\frac{1}{t}[k({x_1}+{x_2})-4k]=\frac{-4k}{{t(1+2{k^2})}}$.
∵点P在椭圆C上,∴$\frac{{{{(8{k^2})}^2}}}{{{{[t(1+2{k^2})]}^2}}}+2\frac{{{{(-4k)}^2}}}{{{{[t(1+2{k^2})]}^2}}}=2$,
∴16k2=t2(1+2k2).
∴${t^2}=\frac{{16{k^2}}}{{1+2{k^2}}}=8-\frac{8}{{1+2{k^2}}}$,
又$\frac{3}{2}<1+2{k^2}<2$,∴$\frac{8}{3}<{t^2}=8-\frac{8}{{1+2{k^2}}}<4$.
∴$-2<t<-\frac{{2\sqrt{6}}}{3}或\frac{{2\sqrt{6}}}{3}<t<2$,
∴实数t的取值范围为$(-2,-\frac{{2\sqrt{6}}}{3})∪(\frac{{2\sqrt{6}}}{3},2)$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、向量的坐标运算性质、一元二次方程的判别式及其根与系数的关系、不等式的解法及其性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.己知椭圆的对称中心为原点O,焦点在x轴上,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2 构成的三角形中面积的最大值为$\sqrt{3}$,且点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程:
(2)已知点A,B是椭圆上的两动点,若OA⊥OB时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4,∠PAB=60° 
(I)若PE中点为.求证:AE∥平面PCD;
(Ⅱ)若G是PC的中点,求三棱锥P-BDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.近期,双十中学首届游泳比赛在新建成的韩振东游泳馆中举行,在前期报名中,同学们也都表现出了极大的兴趣.为了确保赛事的顺利进行,学校邀请了湖里区游泳协会的相关人员前来协助,还在学校征招了8名同学当志愿者,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合$A=\{x∈R|y=\frac{1}{{\sqrt{x-1}}}\},B=\{y|y=x+\frac{1}{x},x∈R且x≠0\}$,则(CRB)∩A=(  )
A.(1,+∞)B.[-2,2)C.(-2,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.经过直线$l:x+y-2\sqrt{2}=0$上的点P,向圆O:x2+y2=1引切线,切点为A,则切线长|PA|的最小值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an},满足a1=1,an-an-1=n,则a10=(  )
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,G是EF的中点,AG=1
(1)证明:AG⊥平面ABCD;
(2)求直线BF与平面ACE所成角的正弦值;
(3)判断线段AC上是否存在一点M,使MG∥平面ABF?若存在,求出$\frac{AM}{AC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)计算:${(2\frac{1}{4})^{\frac{1}{2}}}+(lg7{)^0}+{(\frac{8}{125})^{-\frac{1}{3}}}$;
(2)解方程:${log_2}({3^x}-49)=5$.

查看答案和解析>>

同步练习册答案