精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都经过点P(2,0),且在点P处有公切线,求f(x),g(x)的表达式及点P处的公切线方程.

解:∵函数f(x)=2x3+ax的图象经过点P(2,0)
∴f(2)=2×23+2a=0∴a=-8
∴f(x)=2x3-8x
∴f′(x)=6x2-8
∴点P处的切线斜率k=f′(2)=6×22-8=16
∵两函数图象在点P处有公切线
∵g′(x)=2bx
∴g′(2)=4b=16∴b=4
∴g(2)=16+c=0∴c=-16
∴g(x)=4x2-16∴点P处的公切线方程为:y=16(x-2),即16x-y-32=0.
分析:函数f(x)与g(x)的图象都经过点P(2,0),求得a,b值,求f(x),g(x)的表达式;再求出曲线方程的导函数,根据曲线方程设出切点坐标,把设出的切点横坐标代入导函数中表示出的导函数值即为切线的斜率,由切点坐标和斜率表示出切线方程,把原点坐标代入切线方程中即可求出切点的横坐标,进而得到切点的纵坐标和切线的斜率,写出公切线方程即可.
点评:本小题主要考查函数解析式的求解及常用方法、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案