精英家教网 > 高中数学 > 题目详情

某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种.(用数字作答)

30
分析:由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;
(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.
解答:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;
(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.
所以不同的选法共有C31C42+C32C41=18+12=30种.
故答案为:30
点评:本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

22、某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有
30
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有          种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有          种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源:2014届福建高二下第一次月考理科数学试卷(解析版) 题型:填空题

某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有         种.(用数字作答)

 

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(全国Ⅰ)文科数学全解全析 题型:填空题

某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有          种.(用数字作答)

 

查看答案和解析>>

同步练习册答案