精英家教网 > 高中数学 > 题目详情

【题目】已知定点M(0,2)N(2,0),直线lkxy2k20(k为常数)

(1)若点MN到直线l的距离相等,求实数k的值;

(2)对于l上任意一点P∠MPN恒为锐角,求实数k的取值范围.

【答案】1k1k

2k∈(,-)∪(1,+∞)

【解析】

解:(1)∵MN到直线l的距离相等,

直线l平行于MN所在的直线或过MN的中点,

∴k1k

(2)l上任意一点P(x0kx02k2)

∠MPN恒为锐角,则·>0

(x0kx02k)·(x02kx02k2)>0

∴x022x0(kx02k)22kx04k>0

∴(1k2)x02(2k4k22)x04k24k>0x0∈R恒成立,

∴Δ(2k4k22)24(k21)(4k24k)<0

即-7k26k1<0∴k>1k<

k∈(,-)∪(1,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,1是函数的一个零点,求的值;

时,讨论函数的单调性;

若对任意,都存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了测量某塔的高度,某人在一条水平公路两点进行测量.在点测得塔底在南偏西,塔顶仰角为,此人沿着南偏东方向前进10米到点,测得塔顶的仰角为,则塔的高度为( )

A. 5米B. 10米C. 15米D. 20米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解不等式:

2)是否存在实数t,使得不等式,对任意的及任意锐角都成立,若存在,求出t的取值范围:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里为常数,

1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?

2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是直角梯形,,,,,又平面,且,点在棱上且.

1)求证:;

2)求与平面所成角的正弦值;

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题,

①命题“若,则”为真命题;

②命题“若,则”的否命题为真命题;

③若平面上不共线的三个点到平面距离相等,则

④若是两个不重合的平面,直线,命题,命题,则的必要不充分条件;

⑤平面过正方体的三个顶点,且与底面的交线为,则

其中,真命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】N为不同的两点,直线l=,下列命题正确中正确命题的序号是_______

1)若,则直线l与线段MN相交;

2)若=-1,则直线l经过线段MN的中点;

3)存在,使点M在直线l上;

4)存在,使过MN的直线与直线l重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对顾客实行购物优惠活动,规定 :一次购物总额

1)如果不超过500元,那么不予优惠;

2)如果超过500元但不超过1000元,那么超过500元部分按标价给予8折优惠;

3)如果超过1000元,那么其中超过500不超过1000元给予8折优惠,超过1000元部分给予5折优惠.设一次购物标价总额为x元,优惠后实际付款额为f(x).

1)试写出f(x)的解析式;

2)如果某顾客实际付款额为1600元,在这次优惠活动中他实际付款额比购物标价总额少支出多少元?

查看答案和解析>>

同步练习册答案