【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为
(1)求的概率;
(2)求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】中国清朝数学家李善兰在1859年翻译《代数学》中首次将“”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合,,给出下列四个对应法则,请由函数定义判断,其中能构成从到的函数的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,,,,,.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中且
(i)当时,若,则实数的取值范围是___________;
(ii) 若存在实数使得方程有两个实根,则实数的取值范围是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.对具有线性相关关系的变量有一组观测数据,其线性回归方程是,且,则实数的值是
B.正态分布在区间和上取值的概率相等
C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D.若一组数据的平均数是2,则这组数据的众数和中位数都是2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的方程为,曲线:(为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线:.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线与轴围成的区域(不含边界)内,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为(为参数),,为过点的两条直线,交于,两点,交于,两点,且的倾斜角为,.
(1)求和的极坐标方程;
(2)当时,求点到,,,四点的距离之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以为直径的圆上每一点都染上了红、黄、蓝三色之一,已知、染上了红色,联结圆上的点组成三角形,给出4个结论:
①必定存在一个直角三角形,三个顶点同为红色;
②必定存在一个直角三角形,三个顶点同色;
③必定存在一个直角三角形,三个顶点全不同色;
④必定存在一个直角三角形,或都三个顶点同色,或者三个顶点全不同色。
则真命题的个数是( )个。
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com