精英家教网 > 高中数学 > 题目详情
1.某公司电脑专业技术人员对该公司A,B两个办公室的50台电脑进行报废检查,其中A办公室的电脑占60%,B办公室的电脑占40%,A办公室电脑的报废率为10%,B办公室电脑的报废率为20%.
(1)若从这50台电脑中随机抽取1台(每台电脑被抽到的机会相等),求该电脑是A办公室的且不报废的概率.
(2)若从这50台电脑中随机抽取2台(每台电脑被袖到的机会相等),记这2台电脑是A办公室的且不报废的台数为ξ,求ξ的分布列与数学期望.

分析 (1)利用等可能事件概率计算公式能求出该电脑是A办公室的且不报废的概率.
(2)由已知得ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)∵某公司电脑专业技术人员对该公司A,B两个办公室的50台电脑进行报废检查,
其中A办公室的电脑占60%,B办公室的电脑占40%,
A办公室电脑的报废率为10%,B办公室电脑的报废率为20%.
∴从这50台电脑中随机抽取1台(每台电脑被抽到的机会相等),
该电脑是A办公室的且不报废的概率:
p=$\frac{50×60%×(1-10%)}{50}$=0.54.
(2)由已知得ξ的可能取值为0,1,2,
∵50台电脑中是A办公室且不报废的电脑有27台,
P(ξ=0)=$\frac{{C}_{23}^{2}}{{C}_{50}^{2}}$=$\frac{253}{1225}$,
P(ξ=1)=$\frac{{C}_{23}^{1}{C}_{27}^{1}}{{C}_{50}^{2}}$=$\frac{621}{1225}$,
P(ξ=2)=$\frac{{C}_{27}^{2}}{{C}_{50}^{2}}$=$\frac{351}{1225}$,
∴ξ的分布列为:

 ξ 0 1 2
 P $\frac{253}{1225}$ $\frac{621}{1225}$ $\frac{351}{1225}$
Eξ=$0×\frac{253}{1225}+1×\frac{621}{1225}+2×\frac{351}{1225}$=$\frac{27}{25}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求下列各函数的导数
(1)y=xsinx+cosx;
(2)y=3x2-x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l1:3x+4y-2=0,l2:2x+y+2=0,l1与l2交于点P.
(Ⅰ)求点P的坐标,并求点P到直线4x-3y-6=0的距离;
(Ⅱ)分别求过点P且与直线3x-y+1=0平行和垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,$SA=4\sqrt{3}$,AB=2,AC=4,∠BAC=60°,则球O的表面积为(  )
A.B.12πC.16πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点A和B为抛物线y2=2px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,则点M的轨迹方程为x2+y2-2px=0(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{a}{x-a}$在区间(3,+∞)上单调递减,则a的取值范围是(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍,焦距为12$\sqrt{2}$.
(1)求此椭圆的标准方程;
(2)一双曲线以椭圆的焦点为顶点,以椭圆的顶点为焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项公式是an=1-$\frac{1}{n}$,求证该数列是递增数列.

查看答案和解析>>

同步练习册答案