精英家教网 > 高中数学 > 题目详情
命题“?x∈R,ax2-2ax+3≥0成立”是真命题,则实数a的取值范围为
 
考点:全称命题
专题:简易逻辑
分析:分a=0和a≠0两种情况讨论.
解答: 解:由题意可知,
①当a=0时,原不等式化为“3≥0“对?x∈R显然成立.
②当a≠0时,只需
a>0
△≤0
,即
a>0
4a2-12a≤0

解得0<a≤3.
综合①②,得0≤a≤3.
故答案为:[0,3].
点评:本题属于比较简单的恒成立问题,求解时不要遗漏了“a=0”这种情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m,n为不同的直线,α,β为不同的平面,有如下四个命题:
①若m∥α,n?α,则m∥n;
②若m∥α,m∥β,则α∥β;
③若α⊥β,m⊥α,则m∥β;
④若m⊥α,n∥β且α∥β,则m⊥n.
其中错误命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴是短轴的两倍,点A(
3
1
2
)
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△ABO的面积为S.
(1)求椭圆C的方程.
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+1(a>0)
(Ⅰ)若a=2,求函数f(x)在(e,f(e))处的切线方程;
(Ⅱ)当x>0时,求证:f(x)-1≥a(1-
1
x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
4m2
+
y2
m2
=1
(m>0),如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(2,0),B(0,1),C(2,1).
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若椭圆C与△ABC无公共点,求m的取值范围;
(Ⅲ)若椭圆C与△ABC相交于不同的两点,分别为M、N,求△OMN面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(l+ax)(1+x)5的展开式中x2的系数为5,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=4
2
的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过定点(2,0)的直线与抛物线x2=y相交于A(x1,y1),B(x2,y2)两点.若x1,x2是方程x2+xsinα-cosα=0的两个不相等实数根,则tanα的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n和为Sn,且满足an+Sn=1(n∈N*
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列{Sn+λn+
2n
}
为等差数列,若存在,求出λ的值,若不存在,说明理由;
(3)设bn=
1
2n+1(an+1)(an+1+1)
,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案