精英家教网 > 高中数学 > 题目详情
8.椭圆4x2+y2=16的长轴长等于8.

分析 化椭圆方程为标准方程,求出长半轴长,则答案可求.

解答 解:由4x2+y2=16,得$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1$,
∴椭圆为焦点在y轴上的椭圆,
则a2=16,∴a=4.
∴椭圆4x2+y2=16的长轴长等于2a=2×4=8.
故答案为:8.

点评 本题考查椭圆的简单性质,考查了椭圆的标准方程,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.解不等式组:$\left\{\begin{array}{l}{|x-3|≤5}\\{-{x}^{2}-x+6<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中满足在(-∞,0)是单调递增的是(  )
A.f(x)=$\frac{1}{x+2}$B.f(x)=-(x+1)2C.f(x)=1+2x2D.f(x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义区间[a,b]的区间长度为b-a,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度所处的区间[a,b].(要求区间长度为$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点$(2\sqrt{2},1)$到两焦点的距离之和为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设点P在椭圆C上,F1、F2为椭圆C的左右焦点,若∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若cosα>0,则(  )
A.tanαsinα≥0B.sin2α≤0C.sinα≤0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=blnx-$\frac{1}{x}$,g(x)=-ax2+b,函数F(x)=$\frac{a+b}{b}f(x)-g(x)+\frac{a+b}{x}$(a,b∈R,且b≠0),曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)讨论函数F(x)的单调性;
(3)设a≤-2,证明:对任意x1,x2∈(0,+∞),|F(x1)-F(x2)|≥4|x1-x2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法中正确的个数有(  )
①两平面平行,夹在两平面间的平行线段相等;
②两平面平行,夹在两平面间的相等的线段平行;
③两条直线被三个平行平面所截,截得的线段对应成比例;
④如果夹在两平面间的三条平行线段相等,那么这两个平面平行.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:实数x满足x2-4ax+3a2<0,命题q:实数x满足log2x≤2.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若a>0且?q是?p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案