精英家教网 > 高中数学 > 题目详情
11.若幂函数$f(x)={x^{{a^2}-2a-3}}$在(0+∞)上为减函数,则实数a的取值范围是(  )
A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(-∞,-1]∪[3,+∞)D.[-1,3]

分析 根据幂函数的性质可知,若幂函数f(x)=xa在(0,+∞)上是减函数,则a<0,从而得出答案

解答 解:根据幂函数的性质可知,
a2-2a-3<0
解得-1<a<3,
故实数a的取值范围是(-1,3)
故选:B.

点评 本题主要考查幂函数的单调性以及等价转化思想,幂函数的概念、性质以及等价转化思想.本题用到的技巧与方法:熟记几种特殊的幂函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=$\frac{a}{3}$,过PMN的平面交上底面于PQ,Q在CD上,则PQ等于(  )
A.$\frac{\sqrt{2}}{2}$aB.$\frac{\sqrt{2}}{4}$aC.$\frac{\sqrt{2}}{3}$aD.$\frac{2\sqrt{2}}{3}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中既不是奇函数也不是偶函数的是(  )
A.y=$\sqrt{{x}^{2}-2}$B.y=ln(x+$\sqrt{{x}^{2}+1}$)C.y=x-exD.y=$\frac{{e}^{2x}-1}{{e}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.满足线性约束条件$\left\{\begin{array}{l}{2x+y≤3}\\{x+2y≤3}\\{x≥0,y≥0}\end{array}\right.$的目标函数x+3y的最大值是(  )
A.$\frac{9}{2}$B.$\frac{3}{2}$C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A为不等式组$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-x≤2\end{array}\right.$表示的平面区域,则当a从-1连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的定义域是(0,+∞),并在定义域内为减函数,且满足f(xy)=f(x)+f(y),及f(4)=1,
(1)求f(1);
(2)解不等式f(-x)+f(3-x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.长方体ABCD-A1B1C1D1中,高DD1=4cm,.底面是边长为3cm的正方形,求对角线D1B与底而ABCD所成角的大小(精确列1′)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)满足f(x+6)=f(x),在(-3,3]上单调递减,那么以下数中,最大的是(  )
A.f(8)B.f(-4.4)C.f(-7)D.f(-5$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出函数y=1+2cos2x,x∈[0,π]的简图,并求使y≥0成立的x的取值范围.

查看答案和解析>>

同步练习册答案