精英家教网 > 高中数学 > 题目详情
(2013•石景山区一模)如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=
3
,BC=4.
(I)求证:BD⊥PC;
(II)设AC与BD相交于点O,在棱PC上是否存在点E,使得OE∥平面PAB?若存在,确定点E位置.
分析:(I)利用勾股定理可得DB,利用余弦定理和勾股定理的逆定理可得∠BDC=90°,即BD⊥DC,再利用线面垂直的性质定理可得PD⊥BD,利用线面垂直的判定定理即可证明结论;
(II)存在点E,使得OE∥平面PAB,此时PE=
1
5
PC
.在PC上取点E使得PE=
1
5
PC
,连接OE.利用平行线分线段成比例定理可得
AD
BC
=
AO
OC
=
1
4

PE
EC
=
AO
OC
=
1
4
,即可得到OE∥PA.利用线面平行的判定定理即可证明.
解答:证明:(Ⅰ)在Rt△ABD中,∵AD=1,AB=
3

BD2=AB2+AD2=(
3
)2+12
=4,∴BD=2.
∴∠ABD=30°,
∴∠DBC=60°.
在△BCD中,由余弦定理得DC2=22+42-2×2×4cos60°=12,
∴DB2+DC2=BC2
∴∠BDC=90°.∴BD⊥DC.
∵PD⊥平面ABCD,∴PD⊥BD.
又PD∩DC=D,∴BD⊥平面PDC.
∴BD⊥PC.
(II)存在点E,使得OE∥平面PAB,此时PE=
1
5
PC
.证明如下:
在PC上取点E使得PE=
1
5
PC
,连接OE.
由AD∥BC,
AD
BC
=
AO
OC
=
1
4

PE
EC
=
AO
OC
=
1
4
,可得OE∥PA.
又∵PA?平面PAB,OE?平面PAB,
∴OE∥平面PAB.
点评:本题综合考查了余弦定理和勾股定理的逆定理、线面垂直的判定与性质定理、平行线分线段成比例定理等基础知识与基本技能,考查了空间想象能力和推理能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•石景山区二模)对于直线m,n和平面α,β,使m⊥α成立的一个充分条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)=
log2x(x>0)
-x2-4x(x≤0)
,则此函数的“友好点对”有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)设集合M={x|x2≤4),N={x|log2 x≥1},则M∩N等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)某四棱锥的三视图如图所示,则最长的一条侧棱长度是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量
p
=(m,n),
q
=(3,6),则向量
p
q
共线的概率为(  )

查看答案和解析>>

同步练习册答案