精英家教网 > 高中数学 > 题目详情

【题目】已知函数(>0)的部分图象如图所示,AB分别是这部分图象上的最高点、最低点,为坐标原点,若·0则下列结论:①函数是周期为4的奇函数;②函数是周期为4的偶函数;③函数的最大值是;④函数向左平移个单位后得到的函数图象关于原点对称;其中错误命题的个数是(

A.3B.2C.1D.0

【答案】C

【解析】

根据三角函数的图象求出函数周期,表示出AB的坐标,结合向量求出,则可求出,再利用三角函数的性质逐一判断.

解:函数的周期
A点的横坐标为B点的横坐标为


,解得

,且,奇函数,故正确;

,且,偶函数,故正确;

,最大值为,故③错误;

函数向左平移个单位后得到

,则关于原点对称,故正确.
故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的上顶点与抛物线)的焦点重合.

(1)设椭圆和抛物线交于 两点,若,求椭圆的方程;

(2)设直线与抛物线和椭圆均相切,切点分别为 ,记的面积为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,抛物线的焦点为,点是抛物线上到直线距离最小的点.

(1)求点的坐标;

(2)若直线与抛物线交于两点,中点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了改善居民的休闲娱乐活动场所,现有一块矩形草坪如下图所示,已知:米,米,拟在这块草坪内铺设三条小路,要求点的中点,点在边上,点在边时上,且.

1)设,试求的周长关于的函数解析式,并求出此函数的定义域;

2)经核算,三条路每米铺设费用均为元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为进一步贯彻落实“十九”大精神,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛,从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,得到如图所示的频率分布直方图.

(1)求图中的值;

(2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图像在处的切线方程为:

(1)求的值;

(2)若成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知时,函数有极值

(1)求实数的值;

(2)若方程有3个实数根,求实数的取值范围。

查看答案和解析>>

同步练习册答案