(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
(1)y=-+3600x(x∈N*,1≤x≤40)(2)该厂的日产量为30件时,日利润最大,其最大值为7200元
【解析】
试题分析:解:(1)y=4000··x-2000(1-)·x……………………………4分
=3600x-
∴所求的函数关系是y=-+3600x(x∈N*,1≤x≤40). …………………………4分
(Ⅱ) 由函数y= (x>0),y′=3600-4,令y′=0,解得x=30.
∴当1x<30时,y′>0;当30<x40时,y′<0.
∴函数y=在[1,30]上是单调递增函数,在[30,40]上是单调递减函数. ………………………………………………………………9分
∴当x=30时,函数y= (1≤x≤40)取最大值,最大值为×303+3600×30=7200(元).
∴该厂的日产量为30件时,日利润最大,其最大值为7200元 ……………………12分
考点:考查了函数的模型在实际中的运用。
点评:解决这类问题的关键是理解利润函数与成本和收入的关系式,同时要注意到函数的自编来那个的实际意义,得到定义域,结合函数 性质求解最值。属于中档题。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com