精英家教网 > 高中数学 > 题目详情
已知F2、F1是双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(  )
A、3
B、
3
C、2
D、
2
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:首先求出F2到渐近线的距离,利用F2关于渐近线的对称点恰落在以F1为圆心,|OF1|为半径的圆上,可得直角三角形MF1F2,运用勾股定理,即可求出双曲线的离心率.
解答: 解:由题意,F1(0,-c),F2(0,c),
一条渐近线方程为y=
a
b
x,则F2到渐近线的距离为
bc
a2+b2
=b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,
∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2
∴c=2a,∴e=2.
故选C.
点评:本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是一次函数,且
1
0
f(x)dx=5,
1
0
xf(x)dx=
17
6
,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn=3n-a,则实数a=
 
,公比q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

最新调查显示,目前我国主流城市白领亚健康的比例高达76%,处于过度疲劳状态的接近6成,大部分白领均缺乏运动锻炼.某健康协会为了了解白领们每天锻炼身体的时间(单位:分钟),进入一些国企中随机抽取了n名白领进行调查,其频率分布直方图如图所示,其中运动时间不低于20分钟的人数为81人,则n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx图象上点的横坐标扩大到原来的m倍,纵坐标保持不变,再向左平移n个单位得到如图所示函数的图象,则m,n可以为(  )
A、m=2,n=
π
3
B、m=2,n=
11π
3
C、m=4,n=
π
3
D、m=4,n=
11π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

记Cir为从i个不同的元素中取出r个元素的所有组合的个数.随机变量ξ表示满足Cir
1
2
i2的二元数组(r,i)中的r,其中i∈{2,3,4,5,6,7,8,9,10},每一个Cir(r=0,1,2,…,i)都等可能出现.求Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等分区间的情况下,f(x)=
1
1+x2
(x∈[0,2])及x轴所围成的曲边梯形的面积和式的极限形式正确的是(  )
A、
lim
n→+∞
n
i=1
[
1
1+(
i
n
)
2
2
n
]
B、
lim
n→+∞
n
i=1
[
1
1+(
2i
n
)2
2
n
]
C、
lim
n→+∞
n
i=1
[
1
1+i2
1
n
]
D、
lim
n→+∞
n
i=1
[
1
1+(
i
n
)
2
1
n
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若loga(2x-3)+loga2>loga(5x-1),则x的取值范围为
 

查看答案和解析>>

同步练习册答案