精英家教网 > 高中数学 > 题目详情
18.已知c≠0,且a,b,c,2b成等差数列,则$\frac{a}{c}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 由题意知$\left\{\begin{array}{l}{a+c=2b}\\{b+2b=2c}\end{array}\right.$,从而解得.

解答 解:∵a,b,c,2b成等差数列,
∴$\left\{\begin{array}{l}{a+c=2b}\\{b+2b=2c}\end{array}\right.$,
解得,b=$\frac{2}{3}$c,a=$\frac{1}{3}$c;
故$\frac{a}{c}$=$\frac{1}{3}$;
故选A.

点评 本题考查了等差中项的应用,注意用c来表示a,b即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且f(-x)=f(x),则(  )
A.f(x)在(0,$\frac{π}{2}$)单调递减B.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)单调递减
C.f(x)在(0,$\frac{π}{2}$)单调递增D.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{1}{2}$),离心率是$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程:
(2)若直线l与椭圆C交于A,B两点,线段AB的中点为($\frac{1}{2}$,$\frac{1}{2}$),求直线l与坐标轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的方程为x2+y2=4;
(1)设过点P(1,1)的直线1被圆C截得的弦长等于2$\sqrt{3}$,求直线1的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=4x5+3x3+2x+1,则f(log23)+f(lo${g}_{\frac{1}{2}}3$)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于点DE,求证:BD=DE=EC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是幂函数,且图象不经过原点.
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x2-3x-18≥0},B={x|$\frac{x+5}{x-14}$≤0}.
(1)求(∁UB)∩A.
(2)若集合C={x|2a<x<a+1},且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=(a-2)x2+2(a-2)x-4,
(Ⅰ)当x∈R时,恒有f(x)<0,求a的取值范围;
(Ⅱ)当x∈[1,3)时,恒有f(x)<0,求a的取值范围;
(Ⅲ)当a∈(1,3)时,恒有f(x)<0,求x的取值范围.

查看答案和解析>>

同步练习册答案