【题目】程序框图如图所示,若其输出结果是140,则判断框中填写的是( )
A.B.C.D.
【答案】B
【解析】
当S=0,i=1时,应满足继续循环的条件,执行完循环体后,S=1,i
当S=1,i=2时,应满足继续循环的条件,执行完循环体后,S=5,i=3,
当S=5,i=3时,应满足继续循环的条件,执行完循环体后,S=14,i=4
当S=14,i=4时,应满足继续循环的条件,执行完循环体后,S=30,i=5
当S=30,i=5时,应满足继续循环的条件,执行完循环体后,S=55,i=6
当S=55, i =6时,应满足继续循环的条件,执行完循环体后,S=91,i=7
应满足继续循环的条件,执行完循环体后,S=140,i=8
当S=140,i=8时,应不满足继续循环的条件
故循环条件应为
故选:B
科目:高中数学 来源: 题型:
【题目】某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:,,,…,(单位:元),得到如图所示的频率分布直方图:
(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为“健身达人”与性别有关?
健身达人 | 非健身达人 | 总计 | |
男 | 10 | ||
女 | 30 | ||
总计 |
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
0.100 | 0.050 | 0.010 | 0.005 | ||
2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:“若,为异面直线,平面过直线且与直线平行,则直线与平面的距离等于异面直线,之间的距离”为真命题.根据上述命题,若,为异面直线,且它们之间的距离为,则空间中与,均异面且距离也均为的直线的条数为( )
A.0条B.1条C.多于1条,但为有限条D.无数多条
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水稻就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区的水稻,具有抗旱抗涝、抗病虫害、抗倒伏抗盐碱等特点.近年来,我国的海水稻研究取得了阶段性成果,目前已开展了全国大范围试种.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各株,测量了它们的根系深度(单位:),得到了如下的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )
A.海水稻根系深度的中位数是
B.普通水稻根系深度的众数是
C.海水稻根系深度的平均数大于普通水稻根系深度的平均数
D.普通水稻根系深度的方差小于海水稻根系深度的方差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于由有限个自然数组成的集合A,定义集合S(A)={a+b|a∈A,b∈A},记集合S(A)的元素个数为d(S(A)).定义变换T,变换T将集合A变换为集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n个元素,证明:“d(S(A))=2n-1”的充要条件是“集合A中的所有元素能组成公差不为0的等差数列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素个数最少的集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队人)进入了决赛,规定每人回答一个问题,答对为本队赢得分,答错得分,假设甲队中每人答对的概率均为,乙队中人答对的概率分別为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.
(1)求的分布列;
(2)求甲、乙两队总得分之和等于分且甲队获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,函数,记.把函数的最大值称为函数的“线性拟合度”.
(1)设函数,,,求此时函数的“线性拟合度”;
(2)若函数,的值域为(),,求证:;
(3)设,,求的值,使得函数的“线性拟合度”最小,并求出的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com