精英家教网 > 高中数学 > 题目详情

【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为 .三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示: .

(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;

(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马,那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?最大概率是多少?

【答案】(1) 2田忌按的顺序出马,才能使自己获胜的概率达到最大

【解析】试题分析:(1齐王与田忌赛马,有六种情况,田忌获胜的只有一种,故田忌获胜的槪率为.(2)因齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,在余下的两场比赛中,田忌获胜的概率为(余下两场是齐王的中马对田忌上马和齐王的下马对田忌的上马;齐王的中马对田忌下马和齐王的下马对田忌的中马,前者田忌赢,后者田忌输)

解析:记比赛为,其它同理.

1)齐王与田忌赛马,有如下六种情况:

其中田忌获胜的只有一种: .故田忌获胜的槪率为.

2)已知齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:

①若齐王第二场派出中等马,可能的对阵为: .田忌获胜的概率为

②若齐王第二场派出下等马,可能的对阵为: .田忌获胜的概率也为.

所以,田忌按的顺序出马,才能使自己获胜的概率达到最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段AB的两个端点AB分别在x轴和y轴上滑动,且∣AB∣=2

(1)求线段AB的中点P的轨迹C的方程;

(2)求过点M(1,2)且和轨迹C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设过抛物线y2=4x的焦点F的直线l交抛物线于点A,B,若以AB为直径的圆过点P(﹣1,2),且与x轴交于M(m,0),N(n,0)两点,则mn=( )
A.3
B.2
C.﹣3
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是( )

A. 方程有实根函数有零点

B. 有两个不同的实根

C. 函数上满足,则内有零点

D. 单调函数若有零点,至多有一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是公差不为零的等差数列,a1=1,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项;
(2)设数列{an}的前n项和为Sn , 令 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},则A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx有两个极值点x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函数g(x)=f(x)﹣f(x0),则g(x)( )
A.恰有一个零点
B.恰有两个零点
C.恰有三个零点
D.至多两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是梯形, .

(Ⅰ)求证:

(Ⅱ)若,点为线段的中点.请在线段上找一点,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为CC1和BB1的中点,则异面直线AE与D1F所成角的余弦值为( )

A.0
B.
C.
D.

查看答案和解析>>

同步练习册答案