精英家教网 > 高中数学 > 题目详情
14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,则tan β=(  )
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

分析 利用诱导公式求得 tanα,利用两角和的正切公式求得tan β=tan[(β-α)+α]的值.

解答 解:∵tan(3π-α)=-tanα=-$\frac{1}{2}$,∴tanα=$\frac{1}{2}$,又tan(β-α)=-$\frac{1}{3}$,
则tan β=tan[(β-α)+α]=$\frac{tan(β-α)+tanα}{1-tan(β-α)•tanα}$=$\frac{-\frac{1}{3}+\frac{1}{2}}{1-(-\frac{1}{3})•\frac{1}{2}}$=$\frac{1}{7}$,
故选:B.

点评 本题主要考查诱导公式、两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知tanθ=$\frac{1}{2}$,则tan($\frac{π}{4}$-θ)=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“直线l的方程为y=k(x-2)”是“直线l经过点(2,0)”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D,E分别为AC1和BB1的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)若F为AB中点,求三棱锥F-C1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数y=3-ax+1的图象恒过定点(1,3);命题q:若函数y=f(x-3)为偶函数,则函数y=f(x)的图象关于直线x=3对称,则下列命题为真命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,bccosA=3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若$b+c=4\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z的对应点为(1,1),则z2=(  )
A.$\sqrt{2}$B.2iC.$-\sqrt{2}$D..2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线E:y2=2px(P>0)的准线为x=-1,M,N为直线x=-2上的两点,M,N两点的纵坐标之积为-8,P为抛物线上一动点,PN,PM,分别交抛物线于A,B两点.
(1)求抛物线E的方程;
(2))问直线AB是否过定点,若过定点,请求出此定点;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1+x2的取值范围是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

查看答案和解析>>

同步练习册答案