精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3+ax2+bx+c的图像如图所示,且与y=0在原点相切,若函数的极小值为-4.

(1)求a、b、c的值;

(2)求函数的递减区间.

答案:
解析:

  解:(1)∵图像过原点,∴c=0.

  (x)=3x2+2ax+b,

  ∵图像与y=0相切,

  ∴(0)=3×0+2a×0+b=0.

  ∴b=0.∴(x)=3x2+2ax=x(3x+2a).

  令(x)=0得x=0或x=

  ∴当x=a时,函数有极小值-4.

  ∴-4=(a)3+a(a)2.解得a=-3.

  综上所述,a=-3,b=0,c=0.

  (2)由(1)可知f(x)=x3-3x2

  ∴(x)=3x2-6x=3x(x-2),

  当0<x<2时,(x)<0,∴函数的递减区间为(0,2).

  解析:(1)数形结合列方程组求a、b、c的值;

  (2)根据(x)<0求解不等式得递减区间.


练习册系列答案
相关习题

科目:高中数学 来源:2014届湖北武汉部分重点中学高二下学期期中考试理数学试卷(解析版) 题型:解答题

 已知实数a满足1<a≤2,设函数f (x)=x3x2+a x.

(Ⅰ) 当a=2时,求f (x)的极小值;

(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的极小值点与f (x)的极小值点相同,

求证:g(x)的极大值小于或等于10.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省临海市高三第三次模拟理科数学试卷(解析版) 题型:选择题

设函数f (x)=x3-4x+a,0<a<2.若f (x)的三个零点为x1,x2,x3,且x1<x2<x3,则

A.x1>-1           B.x2<0             C.x2>0             D.x3>2

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江瑞安瑞祥高级中学高二下学期期中考试文数学试卷(解析版) 题型:解答题

设函数f(x)=x3-12x+5,x∈R.

(1)求函数f(x)的单调区间和极值;

(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年甘肃省高三第二次月考文科数学试卷 题型:解答题

设函数f(x)=x3-3ax2+3bx的图象在处的切线方程为12x+y-1=0.

⑴求a,b的值;

⑵求函数f(x)在闭区间上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省天水市高三第六次检测数学文卷 题型:解答题

(12分)设函数f(x)=x3+ax2-9x-1(a<0)若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行。求:

(1)a的值;

(2)函数y=f (x) 的单调区间;

 

查看答案和解析>>

同步练习册答案