精英家教网 > 高中数学 > 题目详情

中,角对边分别是,且满足
(Ⅰ)求角的大小;
(Ⅱ)若的面积为;求

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)利用余弦定理,则.(Ⅱ)利用三角形面积公式,得出,而余弦定理,得出,由上两式得出.
试题解析:(Ⅰ)由余弦定理得,代入,∴, ∵,∴
(Ⅱ) ,
解得:.
考点:1.向量数量积;2.余弦定理与三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知 的内角A、B、C所对的边为, ,且所成角为.
(Ⅰ)求角B的大小
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△的内角所对边的长分别为,且有

(Ⅰ)求角A的大小;
(Ⅱ)若的中点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,内角对边分别为
(1)求的面积;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,已知.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值时x的集合;
(2)若A是锐角三角形△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C所对的边为a,b,c,已知 a=2bsinA,
(1)求B的值;
(2)若△ABC的面积为,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,,设,并记 
(1)求函数的解析式及其定义域;
(2)设函数,若函数的值域为,试求正实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案