精英家教网 > 高中数学 > 题目详情
设向量
a
b
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,则|
c
|=
 
分析:根据题意求出
c
,利用向量垂直的等价条件即数量积为0,再由数量积的运算求出向量
c
的模.
解答:解:由
a
+
b
+
c
=
0
可得,
c
=-(
a
+
b
),
∵(
a
-
b
)⊥
c
,∴(
a
-
b
)•[-(
a
+
b
)]=0,∴
a
2-
b
2=0,
又∵|
a
|=1,∴|
b
|=1,
a
b
,∴
c
2=[-(
a
+
b
)]2=
a
2+2
a
b
+
b
2=2,即|
c
|=
2

故答案为:
2
点评:本题主要考查了向量垂直的等价条件应用,根据题意和数量积的运算进行求解,也是常考查的题型,难度不大,注意向量之间的关系以及数量积和向量模的转换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
b,
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
b,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=
1
2
,( 
a
-
c
)•( 
b
-
c
)=0,则|
c
|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011年高考全国卷理科)设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=-
1
2
a
-
c
b
-
c
=600,则|
c
|
的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足|
a
|=|
b
|=1,
a
b
=-
1
2
,<
a
-
c
b
-
c
>=60°
,则|
c
|的最大值等于
2
2

查看答案和解析>>

同步练习册答案