精英家教网 > 高中数学 > 题目详情

【题目】设函数 (x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当﹣1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围

【答案】
(1)解:由已知有: =sin2x﹣2tsinx+2t2﹣6t+1=(sinx﹣t)2+t2﹣6t+1,

由于x∈R,∴﹣1≤sinx≤1,

∴当t<﹣1时,则当sinx=﹣1时,f(x)min=2t2﹣4t+2;

当﹣1≤t≤1时,则当sinx=t时,f(x)min=t2﹣6t+1;

当t>1时,则当sinx=1时,f(x)min=2t2﹣8t+2;

综上,


(2)解:当﹣1≤t≤1时,g(t)=t2﹣6t+1,方程g(t)=kt即t2﹣6t+1=kt,

即方程t2﹣(k+6)t+1=0在区间[﹣1,1]有且仅有一个实根,

令q(t)=t2﹣(k+6)t+1,则有:

①若△=(k+6)2﹣4=0,即k=﹣4或k=﹣8.

当k=﹣4时,方程有重根t=1;当k=﹣8时,c方程有重根t=﹣1,∴k=﹣4或k=﹣8.

k<﹣8或 k>﹣4,

综上,当k∈(﹣∞,﹣8]∪[﹣4,+∞)时,关于t的方程g(t)=kt在区间[﹣1,1]有且仅有一个实根


【解析】(1)首先对函数f(x)进行化简整理,进而看当t<﹣1,﹣1≤t≤1和t>1时时函数f(x)的最小值,进而确定g(t)的解析式.(2)根据(1)可知当﹣1≤t≤1时函数g(t)的解析式,整理g(t)=kt得t2﹣(k+6)t+1=0问题转化为在区间[﹣1,1]有且仅有一个实根,先根据判别式等于0求得k的值,令q(t)=t2﹣(k+6)t+1,进而确定函数与x轴的轴有一个交点落在区间[﹣1,1]分别求得k的范围,最后综合可得答案.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线m被两平行线l1:x+y=0与l2:x+y+ =0所截得的线段的长为2 ,则m的倾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正确答案的序号是 . (写出所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分) 选修4-4:极坐标系与参数方程

在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.

)求出曲线的直角坐标方程和直线的参数方程;

)求点到两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为且椭圆经过点.

()求椭圆的方程;

()设过点的直线与椭圆交于两点是线段上的点求点的轨迹方程.

查看答案和解析>>

同步练习册答案