精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

【答案】(1)见解析(2)

【解析】

(Ⅰ)取的中点,连结,得到故,进而得到,利用线面平行的判定定理,即可证得平面.

(Ⅱ)以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.

(Ⅰ)在棱上存在点,使得平面,点为棱的中点.

理由如下:取的中点,连结,由题意,

,故.所以,四边形为平行四边形.

所以,,又平面平面,所以,平面.

(Ⅱ)由题意知为正三角形,所以,亦即

,所以,且平面平面,平面平面

所以平面,故以为坐标原点建立如图空间直角坐标系,

,则由题意知

设平面的法向量为

则由,令,则

所以取,显然可取平面的法向量

由题意:,所以.

由于平面,所以在平面内的射影为

所以为直线与平面所成的角,

易知在中,,从而

所以直线与平面所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在(-1,1)上有定义,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明

(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为123;蓝色卡片两张,标号分别为12.

(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有一分鹿问题:今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成3组派去三地执行公务(每地至少去1人),则不同的方案有( )种.

A.150B.180C.240D.300

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数yfx),若在其定义域内存在x0,使得x0fx0)=1成立,则称函数fx)具有性质M

1)下列函数中具有性质M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0+∞))

fx

2)若函数fx)=a|x2|1)(x[1+∞))具有性质M,则实数a的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年中秋季到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:)进行了问卷调查,得到如下频率分布直方图:

(1)求频率分布直方图中的值;

(2)已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的,请根据人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求?

(3)由频率分布直方图可以认为,该销售范围内消费者的月饼购买量服从正态分布,其中样本平均数作为的估计值,样本标准差作为的估计值,设表示从该销售范围内的消费者中随机抽取10名,其月饼购买量位于的人数,求的数学期望.

附:经计算得,若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用AB两款订餐软件的商家中分别随机抽取50个商家,对它们的平均送达时间进行统计,得到频率分布直方图如下:

1)试估计使用A款订餐软件的50个商家的平均送达时间的众数及平均数(同一组中的数据用该组区间的中点值作代表).

2)根据以上抽样调查数据,将频率视为概率,回答下列问题:

①能否认为使用B款订餐软件平均送达时间不超过40分的商家达到75%

②如果你要从AB两款订餐软件中选择一款订餐,你会选择哪款?说明理由.

查看答案和解析>>

同步练习册答案