精英家教网 > 高中数学 > 题目详情
已知圆C的圆心是直线与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为        

试题分析:直线与圆的位置关系通常利用圆心到直线的距离或数形结合的方法求解,欲求圆的方程则先求出圆心和半径,根据圆与直线相切建立等量关系,解之即可解:直线
化成普通方程是x-y+1=0,令y=0得x=-1,所以直线x-y+1=0,与x轴的交点为(-1.0)因为直线与圆相切,所以圆心到直线的距离等于半径,即 r= = ,所以圆C的方程为;故答案为
点评:本题主要考查直线与圆的位置关系,以及圆的标准方程等基础知识,属于容易题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

极坐标方程和参数方程所表示的图形分别是(     )
A.直线,直线B.直线,圆
C.圆,圆D.圆,直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线的交点个数为(    )
A.4个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=时,求椭圆的方程;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点O和点F分别为双曲线 的中心和左焦点,点P为双曲线右支上的任意一点,则的最小值为(  )
A.-6B.-2C.0D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若直线过双曲线的一个焦点,且与双曲线的一条渐近线平行.
(Ⅰ)求双曲线的方程;
(Ⅱ)若过点轴不平行的直线与双曲线相交于不同的两点的垂直平分线为,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点AB,且线段AB的中点在圆上,求实数m的值。  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是平面的斜线段,为斜足。若点在平面内运动,使得的面积为定值,则动点的轨迹是(   )
A.圆B.椭圆
C.一条直线D.两条平行直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案