精英家教网 > 高中数学 > 题目详情
11.如图,某房子屋檐A点离地面15米.房子上另一点B离地面9米,而且A,B两点在同一铅垂线上,在离地面7米的C处看此房子,问水平距离离此房子多远时A,B的视角(∠ACB)最大?

分析 设C处离此房子x米时看A,B的视角(即∠ACB)最大,过C点作CD⊥AB于D点由图可知 AD=8,BD=2,CD=x,进而表示出tan∠BCD与tan∠ACD,利用两角和与差的正切函数公式表示出tan∠ACB,利用基本不等式求出视角最大时x的值即可.

解答 解:设C处离此房子x米时看A,B的视角(即∠ACB)最大.
过C点作CD⊥AB于D点由图可知 AD=8,BD=2,CD=x    …(3分)
在Rt△ACD中,tan∠ACD=$\frac{8}{x}$
在Rt△BCD中,tan∠BCD=$\frac{2}{x}$
∴tan∠ACB=tan(∠ACD-∠BCD)=$\frac{\frac{8}{x}-\frac{2}{x}}{1+\frac{8}{x}•\frac{2}{x}}$=$\frac{6}{x+\frac{16}{x}}$≤$\frac{3}{4}$   …(9分)
当且仅当x=$\frac{16}{x}$,即x=4时取等号     …(10分)
∴水平距离离房子4米时,视角最大.       …(12分)

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,在△ABC中,已知AB=5,AC=6,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{AD}$•$\overrightarrow{AC}$=4,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.-45B.13C.-13D.-37

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,2)可作圆x2+y2+2x-4y+k-2=0的两条切线,则k的取值范围是(3,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列向量与向量$\overrightarrow{a}$=(-4,3)垂直,且是单位向量的为(  )
A.(-4,3)B.(-3,-4)C.(-$\frac{3}{5}$,$\frac{4}{5}$)D.(-$\frac{3}{5}$,-$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,若直角三角形的直角边为2,那么这个几何体的表面积为(  )
A.$\frac{4}{3}$B.6+2$\sqrt{2}$C.6+2$\sqrt{3}$D.12+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.底面半径为$\sqrt{3}$,母线长为2的圆锥的体积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有这样一段演绎推理:“对数函数y=logax(a>0且a≠1)是增函数,而y=${log}_{\frac{1}{2}}$x是对数函数,所以y=${log}_{\frac{1}{2}}$x是增函数”.上面推理显然是错误的,是因为(  )
A.大前提错导致结论错B.小前提错导致结论错
C.推理形式错导致结论错D.大前提和小前提错导致结论错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有线性相关关系的两个变量x与y有如表对应关系,则其线性回归直线必过点(  )
x23456
y2.23.85.56.57.0
A.(4,5.5)B.(4,5)C.(5,5)D.(6,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的参数方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ=4cos(θ+$\frac{π}{4}$).
(1)判断直线l与曲线C的位置关系;
(2)过直线l上的点作曲线C的切线,求切线长的最小值.

查看答案和解析>>

同步练习册答案