精英家教网 > 高中数学 > 题目详情

【题目】设函数

(Ⅰ)讨论函数的单调性;

)若函数有两个极值点,求证:

【答案】(Ⅰ)当时,函数上单调递增;

时,函数在区间单调递增; 在区间函数单调递减;

时, 函数单调递减, 函数单调递增;

(Ⅱ)见解析.

【解析】试题分析:

试题分析:(Ⅰ)函数的定义域为,得到,令,则,分分类讨论,即可求解函数的单调区间.

(Ⅱ)当函数有两个极值点时,得,令,利用和函数的最值,即可证明结论.

试题解析:

(Ⅰ)函数的定义域为

,则

①当时, , ,从而,故函数上单调递增;

②当时, , 的两个根为

时, ,此时,当函数单调递减;当函数单调递增.

时, ,此时函数在区间单调递增;当函数单调递减.

综上: 当时,函数上单调递增;当时,函数在区间单调递增; 在区间函数单调递减; 当时, 函数单调递减, 函数单调递增.

(Ⅱ)当函数有两个极值点时, ,,

,

,令,函数单调递增;

,函数单调递减;

,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm容器Ⅱ的两底面对角线的长分别为14cm62cm.分别在容器Ⅰ和容器Ⅱ中注入水水深均为12cm现有一根玻璃棒l其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将放在容器Ⅰ中的一端置于点A处另一端置于侧棱上,没入水中部分的长度;

(2)将放在容器Ⅱ中的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数f(x),当x≥0时,f(x)=x2﹣4x
(1)求f(﹣2)的值;
(2)当x<0时,求f(x)的解析式;
(3)设函数f(x)在[t﹣1,t+1](t>1)上的最大值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=log2(4x)log2(2x)的定义域为 . (Ⅰ)若t=log2x,求t的取值范围;
(Ⅱ)求y=f(x)的最大值与最小值,并求取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若,求函数的单调区间;(其中是自然对数的底数)

II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ≤a≤1,若函数f(x)=ax2﹣2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函数表达式;
(2)判断函数g(a)在区间[ ,1]上的单调性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.

(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;

(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.

查看答案和解析>>

同步练习册答案