精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤4.

(1)解:∵f(x)=ax3+bx2-3x,
∴f'(x)=3ax2+2bx-3,
∵函数f(x)=ax3+bx2-3x在x=±1处取得极值,
∴f'(1)=f'(-1)=0…(3分)
即3a+2b-3=3a-2b-3=0,
解得a=1,b=0,
∴f(x)=x3-3x…(6分)
(2)证明:∵f(x)=x3-3x
∴f'(x)=3x2-3=3(x+1)(x-1)…(7分)
当-1<x<1时,f'(x)<0,
故f(x)在区间[-1,1]上为减函数 …(9分)
f(x)max=f(-1)=2,
f(x)min=f(1)=-2…(11分)
∴对于区间[-1,1]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|
≤|f(x)max-f(x)min|
=2-(-2)=4…(12分)
分析:(1)f'(x)=3ax2+2bx-3,依题意,f'(1)=f'(-1)=0,由此能求出函数f(x)的解析式.
(2)由f(x)=x3-3x,知f'(x)=3(x+1)(x-1).当-1<x<1时,f'(x)<0,由此能够证明对于区间[-1,1]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤4.
点评:本题考查利用导数求闭区间上函数的最值的应用,具体涉及到函数解析式的求法和不等式的证明,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案