精英家教网 > 高中数学 > 题目详情
若集合A={x|x>1},集合B={x|x2<4},则集合A∩B=
 
考点:交集及其运算
专题:集合
分析:利用交集的性质和不等式的性质求解.
解答: 解:∵集合A={x|x>1},
集合B={x|x2<4}={x|-2<x<2},
∴集合A∩B={x|1<x<2}.
故答案为:{x|1<x<2}.
点评:本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
4x
4x+2

(1)求证:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,tanA=
1
4
,tanB=
3
5
,AB的长为
17
,试求:
(1)内角C的大小;
(2)最小边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

A={x|0≤x≤2},B={y|1≤y≤2},下列图形中能表示以A为定义域,B为值域的函数的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设m=(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)
2
3
+(1.5)-2;n=log3
427
3
+lg25+lg4+7log72.求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=3,AD=
3
,AA1=h,则异面直线BD与B1C1所成的角为(  )
A、30°B、60°
C、90°D、不能确定,与h有关

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R;命题q:不等式3x-9x<a对一切正实数x均成立.
(Ⅰ)如果p是真命题,求实数a的取值范围;
(Ⅱ)如果命题“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2cosx的导数为(  )
A、y′=x2cosx-2xsinx
B、y′=2xcosx+x2sinx
C、y′=2xcosx-x2sinx
D、y′=xcosx-x2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-2x,g(x)=x2+m(m∈R)
(Ⅰ)对于函数y=f(x)中的任意实数x,在y=g(x)上总存在实数x0,使得g(x0)<f(x)成立,求实数m的取值范围
(Ⅱ)设函数h(x)=af(x)-g(x),当a在区间[1,2]内变化时,
(1)求函数y=h′(x)x∈[0,ln2]的取值范围;
(2)若函数y=h(x),x∈[0,3]有零点,求实数m的最大值.

查看答案和解析>>

同步练习册答案