精英家教网 > 高中数学 > 题目详情

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.

(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

【答案】
(1)解:∵AP+AQ=200,

∴S= =2500

当且仅当x=y=100时取“=”.

∴当x=y=100时,可使得三角形地块APQ的面积最大.


(2)解:设AP=x,AQ=y,则1x150+1.5y100=30000,

化为:x+y=200≥2 ,可得xy≤10000.

∴PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy≥30000.

当且仅当x=y=100时取“=”.

即PQ≥100

∴当且仅当x=y=100时,可使PQ取得最小值,即使用竹篱笆用料最省.


【解析】(1)先求出三角形地块APQ的面积,再利用基本不等式可得三角形地块APQ的面积最大;(2)先利用余弦定理可得PQ2,再利用基本不等式可得PQ的最小值.
【考点精析】掌握基本不等式是解答本题的根本,需要知道基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,a3=6,a6=0.

(1){an}的通项公式;

(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3,{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农

民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如

图2的不完整的条形统计图.

图1 图2

根据以上统计图来判断以下说法错误的是

A. 2013年农民工人均月收入的增长率是

B. 2011年农民工人均月收入是

C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”

D. 2009年到2013年这五年中2013年农民工人均月收入最高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点O内,且满足,设的面积, 的面积,则________.

【答案】

【解析】,可得:

延长OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,

如图所示:

2+3+4=

即O是DEF的重心,

△DOE,△EOF,△DOF的面积相等,

不妨令它们的面积均为1,

AOB的面积为BOC的面积为AOC的面积为

故三角形AOB,BOC,AOC的面积之比依次为: =3:2:4,

.

故答案为

点睛:本题考查的知识点是三角形面积公式,三角形重心的性质,平面向量在几何中的应用,注意重要结论:点O内,且满足 则三角形AOB,BOC,AOC的面积之比依次为 .

型】填空
束】
16

【题目】如图,正方形ABCD的边长为2OAD的中点,射线OPOA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:

②任意,都有

③任意,都有.

其中正确结论的序号是__________. (把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2OAD的中点,射线OPOA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:

②任意,都有

③任意,都有.

其中正确结论的序号是__________. (把所有正确结论的序号都填上).

【答案】①②

【解析】试题分析::如图,当时, 相交于点,则

∴①正确;:由于对称性, 恰好是正方形的面积,

∴②正确;:显然是增函数,∴③错误.

考点:函数性质的运用.

型】填空
束】
17

【题目】化简

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①e >2②ln2> ③π2<3π ,正确的命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的通项公式为 ),数列定义如下:对于正整数 是使得不等式成立的所有中的最小值.

1)若 ,求

2)若 ,求数列的前项和公式;

3)是否存在,使得 ?如果存在,求的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案