精英家教网 > 高中数学 > 题目详情
18.设f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,求证:
(1)[g(x)]2-[f(x)]2=1;
(2)f(2x)=2f(x)•g(x);
(3)g(2x)=[g(x)]2+[f(x)]2

分析 把已知式子整体代要证的等式化简可得.

解答 证明:(1)∵f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,
∴[g(x)]2-[f(x)]2=[$\frac{{e}^{x}+{e}^{-x}}{2}$]2-[$\frac{{e}^{x}-{e}^{-x}}{2}$]2
=$\frac{{e}^{2x}+{2}^{-2x}+2}{4}$-$\frac{{e}^{2x}+{e}^{-2x}-2}{4}$=$\frac{2-(-2)}{4}$=1;
(2)∵f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,
∴f(2x)=$\frac{{e}^{2x}-{e}^{-2x}}{2}$=$\frac{({e}^{x}+{e}^{-x})({e}^{x}-{e}^{-x})}{2}$
=2•$\frac{{e}^{x}-{e}^{-x}}{2}$•$\frac{{e}^{x}+{e}^{-x}}{2}$=2f(x)•g(x);
(3))∵f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,
∴[g(x)]2+[f(x)]2=[$\frac{{e}^{x}+{e}^{-x}}{2}$]2+[$\frac{{e}^{x}-{e}^{-x}}{2}$]2
=$\frac{{e}^{2x}+{2}^{-2x}+2}{4}$+$\frac{{e}^{2x}+{e}^{-2x}-2}{4}$=$\frac{{e}^{2x}+{e}^{-2x}}{2}$=g(2x)

点评 本题考查函数解析式的求解,整体代入是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=2sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则函数g(x)的一个单调递减区间是(  )
A.[-$\frac{5π}{12}$,0]B.[-$\frac{π}{3}$,0]C.[0,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(4,0)、B(0,5)是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两个顶点,C是椭圆上处于第一象限内的点,则△ABC面积的最大值为(  )
A.10($\sqrt{3}$-1)B.10($\sqrt{2}$+1)C.10($\sqrt{2}$-1)D.10($\sqrt{3}$+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.姐图,在正方体ABCD-A1B1C1D1中,E为BC的中点,点P在正方体表面上移动,且满足B1P⊥D1E,则点B1和点P构成的图形是(  )
A.三角形B.四边形C.曲边形D.五边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义域为R的函数f(x)=$\frac{{2}^{x}-1}{a+{2}^{x+1}}$是奇函数.
(1)求a的值;
(2)判断并证明f(x)的单调性;
(3)求函数的值域;
(4)若对任意的t∈R,不等式f(t2-(m一2)t)+f(t2-m+1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|log4x|,若f(x)在[a,b]的值域是[0,1],则b-a的最小值是$\frac{3}{4}$,最大值是$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知点F(1,0),点A,B分别在x轴、y轴上运动,且满足AB⊥BF,$\overrightarrow{AD}$=2$\overrightarrow{AB}$,设点D的轨迹为C.
(I)求轨迹C的方程;
(Ⅱ)若斜率为$\frac{1}{2}$的直线l与轨迹C交于不同两点P,Q(位于x轴上方),记直线OP,OQ的斜率分别为k1,k2,求k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域:
①f(x)=$\frac{1}{1-x(1-x)}$;
②y=x+$\sqrt{1-2x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与30°角终边相同的角的集合是(  )
A.{α|α=k•360°+$\frac{π}{6}$,k∈Z}B.{α|α=2kπ+30°,k∈Z}
C.{α|α=2k•360°+30°,k∈Z}D.{α|α=2kπ+$\frac{π}{6}$,k∈Z}

查看答案和解析>>

同步练习册答案