精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析(2)

【解析】

(1)通过面面垂直的判定转化为线面垂直,进而转化为线线垂直从而证明;

(2)建立空间直角坐标系,利用法向量计算即可.

证明:(1)取中点,连结

,∴

平面,平面平面

平面平面

平面

平面,∴

∴四边形是平行四边形,∴

是等边三角形,∴

平面,平面平面,平面平面

平面,∴平面

平面,∴平面平面

解:(2)由(1)得平面,∴

分别以所在直线为轴,建立空间直角坐标系,

平面的一个法向量为

设平面的一个法向量为

,取,得

设平面与平面所成锐二面角的平面角为

∴平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的方程xa在(1+∞)上有实根;命题q:方程1表示的曲线是焦点在x轴上的椭圆.

1)若p是真命题,求a的取值范围;

2)若pq是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.

1)证明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中,的中点,,将(图)沿直线折起,使(如图.

1)求证:

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆经过点,且圆心在直线上.

1)求圆的方程;

2)若过点的直线被圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设函数,其中.

(Ⅰ)若,讨论的单调性;

(Ⅱ)若

(i)证明恰有两个零点

(ii)设的极值点,的零点,且,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

同步练习册答案