【题目】已知,则的值为______
【答案】233
【解析】分析:根据题意,在(3﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5中,令x=0可得a0=243,设y=(3﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求出其导数,分析可得=﹣10=a1+2a2x+3a3x2+4a4x3+5a5x4,令x=1可得a1+2a2+3a3+4a4+5a5的值,将其值相加即可得答案.
详解:根据题意,(3﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5中,
令x=0可得:35=a0,即a0=243,
设y=(3﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,
其导数y′=﹣10(3﹣2x)4=a1+2a2x+3a3x2+4a4x3+5a5x4,
令x=1可得:﹣10=a1+2a2+3a3+4a4+5a5,
则a0+a1+2a2+3a3+4a4+5a5=243﹣10=233;
故答案为:233
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosxsin(x+ )﹣ cos2x+ ,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在闭区间[﹣ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径AB、AC、AD滑到木板上的时间分别为t1、t2、t3,若已知AB、AC、AD与板的夹角分别为70o、90o和105o,则( )
A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1、t2、t3之间的关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且离心率为.
(I)求椭圆的方程;
(Ⅱ)过椭圆的右顶点做相互垂直的两条直线,,分别交椭圆于、(、异于点),问直线是否通过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求证:
(2)若函数的图象与直线没有交点,求实数的取值范围;
(3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
组别 | 候车时间 | 人数 |
一 | [0,5) | 2 |
二 | [5,10) | 6 |
三 | [10,15) | 4 |
四 | [15,20) | 2 |
五 | [20,25] | 1 |
(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数,,则函数的图像经过怎样的变换可以得到函数的图像
①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.
②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.
③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.
④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com