精英家教网 > 高中数学 > 题目详情
6.函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上的最大值与最小值的和为$\frac{3}{2}$.

分析 根据指数函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上单调递减,得出f(x)max=f(0),f(x)min=f(1),再相加即可.

解答 解:因为指数函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上单调递减,
所以,f(x)max=f(0),f(x)min=f(1),
所以,f(x)max+f(x)min=f(0)+f(1)=1+$\frac{1}{2}$=$\frac{3}{2}$,
即函数在[0,1]上的最大值和最小值的和为$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.

点评 本题主要考查了函数值域的确定,涉及运用函数的单调性确定函数的最大值和最小值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)设f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函数h(x)与g(x)在x=x0处的切线平行,求这两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若y=f(x)与y=g(x)是[a,b]上的两条光滑曲线,则这两条曲线及x=a,x=b所围成的平面图形的面积为(  )
A.$f_a^b(f(x)-g(x))dx$B.$f_a^b(g(x)-f(x))dx$C.$f_a^b|{f(x)-g(x)}|dx$D.$|{f_a^b(f(x)-g(x))dx}|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,则2x+y的最大值为(  )
A.-3B.$\frac{1}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}={a_n}+{n^2}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(mx+1)(1nx-3).
(1)若m=1,求曲线y=f(x)在x=1处的切线方程;
(2)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)${({\frac{1}{8}})^{-\frac{2}{3}}}-\root{4}{{{{({-3})}^4}}}+{({2\frac{1}{4}})^{\frac{1}{2}}}-{(1.5)^2}$
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实轴长为2,焦距为4,过右焦点F1作垂直于x轴的直线l,该双曲线的渐近线与直线l2所围成的三角形的面积记为S,则S的值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合M={-1,0,1},N={x|x=coskπ,k∈Z},则∁MN=(  )
A.B.0C.{0}D.{-1,1}

查看答案和解析>>

同步练习册答案